Aims of the Course

- To familiarize you with key Computer Science concepts in central areas like
 - Automata Theory
 - Formal Languages
 - Models of Computation
 - Complexity Theory
- To equip you with tools with wide applicability in the fields of CS and IT.

Organization (1)

- **Lectures:**
 - Two 1 h lectures per week.
 - Detailed but somewhat tentative schedule available on the module web page.
- **Coursework:**
 - 4 Bi-weekly problem sets.
 - Made available via the module web page.
 - Best 3 counts.
 - Deadlines: 6/2, 20/2, 6/3, 20/3.
Organization (2)

- **Assessment:**
 - Coursework, 25%
 - 2 hour written examination, 75%
- However, *resits* are by 100% written examination (standard School policy)

Literature (1)

- Dr. Thorsten Altenkirch’s and my G52MAL lecture notes. (Available via the G52MAL module page.)

Literature (2)

- Supplementary material; e.g., slides, sample program code. (Available via the G52MAL module page.)
- Your own notes from the lectures!

Literature (3)
Content

1. Mathematical models of computation, such as:
 - Finite automata
 - Pushdown automata
 - Turing machines

2. How to specify formal languages?
 - Regular expressions
 - Context free grammars
 - Context sensitive grammars

3. The relation between 1 and 2.

4. Applications: Scanning and Parsing

Why Study All This? (1)

Formal languages and automata have lots of
applications in CS and IT. Some examples:

- Specification of programming languages
- Implementation of programming language processors
 (G52MAL feeds into G53CMP)
- XML and DTDs (Document Type Definition)
- Finding words and patterns in large bodies of
text, e.g. in web pages.
- Verification of systems with finite number of
 states, e.g. communication protocols.

Why Study All This? (2)

As a concrete example, just the other day, there
was this job opening being advertised:

The Strats team at Standard Chartered is
hiring a developer for a 1 year contracting
role in London. The role is to develop and extend our
parsing and validation library for FpML,
using the FpML Haskell library to parse
and build financial product data into our
internal Haskell data types.

https://donsbot.wordpress.com/2015/01/28/

Why Study All This? (3)

Automata are essential for the study of the limits
of computation. Deep theoretical questions
with big practical implications. Two key issues:

- What can a computer do at all? Decidability
- What can a computer do efficiently? Time and space Complexity
Why Study All This? (4)

- Imagine you’re the lead developer for a new web browser. It obviously needs the capability to run JavaScript.
- To make your product stand out from the competition, your boss proposes you implement a termination check: any non-terminating JavaScript programs can then be rejected, without being run.
- If you succeed, your salary will be doubled. But if you fail, you’d have to look for a new job.
- Should you accept?

Example: The Halting Problem (1)

Consider the following program. Does it terminate for all values of $n \geq 1$?

```java
while (n > 1) {
    if even(n) {
        n = n / 2;
    } else {
        n = n * 3 + 1;
    }
}
```

Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with $n = 7$, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

In fact, for all numbers that have been tried (a lot!), it does terminate . . .

. . . but no one has ever been able to prove that it always terminates!

Example: The Halting Problem (3)

The following important decidability result should then perhaps not come as a total surprise:

It is impossible to write a program that decides if another, arbitrary, program terminates (halts) or not.

What might be surprising is that it *is* possible to prove such a result. This was first done by the British mathematician Alan Turing using Turing Machines.
Alan Turing (1)

Alan Turing (1912–1954):
- Introduced an abstract model of computation, *Turing Machines*, to give a precise definition of what problems that can be solved by a computer.
- Instrumental in the success of British code breaking efforts during WWII.

Noam Chomsky (1)

Noam Chomsky (1928–):
- American linguist who introduced *Context Free Grammars* in an attempt to describe natural languages formally.
- Also introduced the *Chomsky Hierarchy* which classifies grammars and languages and their descriptive power.
The Chomsky Hierarchy

Languages

The terms **language** and **word** are used in a strict technical sense in this course:

- A **language** is a (possibly infinite) set of words.
- A **word** is a **finite** sequence (or string) of symbols.

\(\varepsilon \) denotes the **empty word**, the sequence of zero symbols.

The term **string** is often used interchangeably with the term **word**.

Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an **alphabet** \(\Sigma \) which is a **finite** set.

A common (and important) instance is

\[\Sigma = \{0, 1\} \]

\(\varepsilon \), the empty word, is **never** a symbol of an alphabet.

Languages: Examples

alphabet	\(\Sigma = \{a, b\} \)		
words	\(\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, \ldots \)		
languages	\(\emptyset, \{\varepsilon\}, \{a\}, \{b\}, \{a, aa\}, \{\varepsilon, a, aa, aaa\}, \{a^n	n \geq 0\}, \{a^n b^n	n \geq 0, n \text{ even}\} \)

Note the distinction between \(\varepsilon, \emptyset, \) and \(\{\varepsilon\} \)!
Exercises

• Is the set of natural numbers, \(\mathbb{N} \), a possible alphabet? Why/why not?
• What about the set of all natural numbers smaller than some given number \(n \)?
• Suggest an alphabet of a handful of *drink ingredients*. What are the symbols of your alphabet, and how many are they?
• List some words over your alphabet?
• What might an interesting language over your alphabet be? Does your language include *all* possible words over your alphabet?

All Words Over an Alphabet (1)

Given an alphabet \(\Sigma \) we define the set \(\Sigma^* \) as set of words (or sequences) over \(\Sigma \):

• The empty word \(\epsilon \in \Sigma^* \).
• given a symbol \(x \in \Sigma \) and a word \(w \in \Sigma^* \), \(xw \in \Sigma^* \).
• These are all elements in \(\Sigma^* \).
This is called an *inductive definition*.

Is \(\Sigma^* \) always infinite? Always non-empty?

All Words over an Alphabet (2)

Example: Given \(\Sigma = \{0, 1\} \), some elements of \(\Sigma^* \) are

• \(\epsilon \) (the empty word)
• 0, 1
• 00, 10, 01, 11
• 000, 100, 010, 110, 001, 101, 011, 111
• …

We are just applying the inductive definition.

Note: although there are infinitely many words in \(\Sigma^* \) (when \(\Sigma \neq \emptyset \)), each word has a *finite* length!

Concatenation of Words (1)

An important operation on \(\Sigma^* \) is *concatenation*:

given \(w, v \in \Sigma^* \), their concatenation \(wv \in \Sigma^* \).

For example, concatenation of \(ab \) and \(ba \) yields \(abba \).

This operation can be defined by primitive recursion:

\[
\epsilon v = v \\
(xw)v = x(wv)
\]
Concatenation of Words (2)

Concatenation is associative and has unit ϵ:

\[u(vw) = (uv)w \]
\[\epsilon u = u = u\epsilon \]

where u, v, w are words.

Languages Revisited

The notion of a language L of a set of words over an alphabet Σ can now be made precise:

- $L \subseteq \Sigma^*$, or equivalently
- $L \in P(\Sigma^*)$.

Examples of Languages (1)

Some examples of languages:

- The set \{0010, 00000000, ϵ\} is a language over $\Sigma = \{0, 1\}$. This is an example of a **finite** language.
- The set of words with odd length over $\Sigma = \{1\}$. (Finite or infinite?)
- The set of words that contain the same number of 0s and 1s is a language over $\Sigma = \{0, 1\}$. (Finite or infinite?)

Examples of Languages (2)

- The set of palindromes (words that read the same forwards and backwards, like abba) is a language for any alphabet.
- The set of correct Java programs. This is a language over the set of UNICODE characters.
- The set of programs that, if executed successfully on a Windows machine, prints the text “Hello World!” in a window. This is a language over $\Sigma = \{0, 1\}$.
Concatenation of Languages (1)

Concatenation of words is extended to languages by:

\[MN = \{ uv \mid u \in M \land v \in N \} \]

Example:

\[M = \{ \epsilon, a, aa \} \]
\[N = \{ b, c \} \]
\[MN = \{ uv \mid u \in \{ \epsilon, a, aa \} \land v \in \{ b, c \} \} \]
\[= \{ eb, ec, ab, ac, aab, aac \} \]
\[= \{ b, c, ab, ac, aab, aac \} \]

Concatenation of Languages (2)

- Concatenation of languages is associative:
 \[L(MN) = (LM)N \]
- Concatenation of languages has zero \(\emptyset \):
 \[L\emptyset = \emptyset = \emptyset L \]
- Concatenation of languages has unit \(\{ \epsilon \} \):
 \[L\{ \epsilon \} = L = \{ \epsilon \} L \]

Concatenation of Languages (3)

- Concatenation distributes through set union:
 \[L(M \cup N) = LM \cup LN \]
 \[(L \cup M)N = LN \cup MN \]

But not through intersection! \(L(M \cap N) \neq LM \cap LN \)

Counterexample: \(L = \{ \epsilon, a \}, M = \{ \epsilon \}, N = \{ a \} \):

\[L(M \cap N) = L\emptyset = \emptyset \]
\[LM \cap LN = \{ \epsilon, a \} \cap \{ a, aa \} = \{ a \} \]

Concatenation of Languages (4)

- Exponent notation is used to denote iterated concatenation:
 - \(L^1 = L \)
 - \(L^2 = LL \)
 - \(L^3 = LLL \)
 - \(\ldots \)
- By definition: \(L^0 = \{ \epsilon \} \) (for any language, incl. \(\emptyset \))

\[L^* = \bigcup_{n=0}^{\infty} L^n \]
Language Membership

Fundamental question for a language L: $w \in L$?

- L finite: Easy! (Enumerate L and check)
- L infinite: ?

We need:

- A finite (and preferably concise) formal description of L.
- An algorithmic method to decide if $w \in L$ given a suitable description.

Various approaches to achieve this will be key a theme throughout the module.