Finding People and Information

- Henrik Nilsson
 Room A08
- Moodle
- Main module web page:
 www.cs.nott.ac.uk/~nhn/G52MAL
Aims of the Course
Aims of the Course

- To familiarize you with key Computer Science concepts in central areas like
 - Automata Theory
 - Formal Languages
 - Models of Computation
 - Complexity Theory
Aims of the Course

- To familiarize you with key Computer Science concepts in central areas like
 - Automata Theory
 - Formal Languages
 - Models of Computation
 - Complexity Theory
- To equip you with tools with wide applicability in the fields of CS and IT.
Organization (1)

- **Lectures:**
 - Two 1 h lectures per week.
 - Detailed but somewhat tentative schedule available on the module web page.
Organization (1)

- **Lectures:**
 - Two 1 h lectures per week.
 - Detailed but somewhat tentative schedule available on the module web page.

- **Coursework:**
 - 4 Bi-weekly problem sets.
 - Made available via the module web page.
 - Best 3 counts.
 - Deadlines: 6/2, 20/2, 6/3, 20/3.
Organization (2)

- **Assessment:**
 - Coursework, 25 %
 - 2 hour written examination, 75 %
Organization (2)

- **Assessment:**
 - Coursework, 25 %
 - 2 hour written examination, 75 %
- However, *resits* are by 100 % written examination (standard School policy)

Dr. Thorsten Altenkirch’s and my G52MAL lecture notes. (Available via the G52MAL module page.)
Supplementary material; e.g., slides, sample program code. (Available via the G52MAL module page.)
Literature (2)

- Supplementary material; e.g., slides, sample program code.
 (Available via the G52MAL module page.)
- Your own notes from the lectures!
Literature (3)

- *Introduction to Automata Theory, Languages, and Computation* by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman
- *An Introduction to Formal Languages and Automata* Fourth Edition by Peter Linz
1. Mathematical models of computation, such as:
 - Finite automata
 - Pushdown automata
 - Turing machines
Content

1. Mathematical models of computation, such as:
 - Finite automata
 - Pushdown automata
 - Turing machines

2. How to specify formal languages?
 - Regular expressions
 - Context free grammars
 - Context sensitive grammars
Content

1. Mathematical models of computation, such as:
 - Finite automata
 - Pushdown automata
 - Turing machines

2. How to specify formal languages?
 - Regular expressions
 - Context free grammars
 - Context sensitive grammars

3. The relation between 1 and 2.
1. Mathematical models of computation, such as:
 - Finite automata
 - Pushdown automata
 - Turing machines

2. How to specify formal languages?
 - Regular expressions
 - Context free grammars
 - Context sensitive grammars

3. The relation between 1 and 2.

4. Applications: Scanning and Parsing
Why Study All This? (1)

Formal languages and automata have lots of applications in CS and IT. Some examples:
Why Study All This? (1)

Formal languages and automata have lots of applications in CS and IT. Some examples:

- Specification of programming languages
Why Study All This? (1)

Formal languages and automata have lots of applications in CS and IT. Some examples:

- Specification of programming languages
- Implementation of programming language processors (G52MAL feeds into G53CMP)
Why Study All This? (1)

Formal languages and automata have lots of applications in CS and IT. Some examples:

- Specification of programming languages
- Implementation of programming language processors (G52MAL feeds into G53CMP)
- XML and DTDs (Document Type Definition)
Why Study All This? (1)

Formal languages and automata have lots of applications in CS and IT. Some examples:

- Specification of programming languages
- Implementation of programming language processors (G52MAL feeds into G53CMP)
- XML and DTDs (Document Type Definition)
- Finding words and patterns in large bodies of text, e.g. in web pages.
Formal languages and automata have lots of applications in CS and IT. Some examples:

- Specification of programming languages
- Implementation of programming language processors (G52MAL feeds into G53CMP)
- XML and DTDs (Document Type Definition)
- Finding words and patterns in large bodies of text, e.g. in web pages.
- Verification of systems with finite number of states, e.g. communication protocols.
Why Study All This? (2)

As a concrete example, just the other day, there was this job opening being advertised:

The Strats team at Standard Chartered is hiring a developer for a 1 year contracting role in London. The role is to develop and extend our parsing and validation library for FpML, using the FpML Haskell library to parse and build financial product data into our internal Haskell data types.

https://donsbot.wordpress.com/2015/01/28/
Why Study All This? (3)

Automata are essential for the study of the limits of computation. Deep theoretical questions with big practical implications. Two key issues:
Automata are essential for the study of the limits of computation. Deep *theoretical questions* with big *practical implications*. Two key issues:

- What can a computer do *at all*?
Automata are essential for the study of the limits of computation. Deep *theoretical questions* with big *practical implications*. Two key issues:

- What can a computer do *at all*? *Decidability*
Automata are essential for the study of the limits of computation. Deep *theoretical questions* with big *practical implications*. Two key issues:

- What can a computer do *at all*? *Decidability*
- What can a computer do *efficiently*?
Automata are essential for the study of the limits of computation. Deep theoretical questions with big practical implications. Two key issues:

- What can a computer do at all? **Decidability**
- What can a computer do efficiently? Time and space **Complexity**
Why Study All This? (4)
Why Study All This? (4)

- Imagine you’re the lead developer for a new web browser. It obviously needs the capability to run JavaScript.
Why Study All This? (4)

• Imagine you’re the lead developer for a new web browser. It obviously needs the capability to run JavaScript.

• To make your product stand out from the competition, your boss proposes you implement a termination check: any non-terminating JavaScript programs can then be rejected, without being run.
Imagine you’re the lead developer for a new web browser. It obviously needs the capability to run JavaScript.

To make your product stand out from the competition, your boss proposes you implement a termination check: any non-terminating JavaScript programs can then be rejected, without being run.

If you succeed, your salary will be doubled. But if you fail, you’d have to look for a new job.
Imagine you’re the lead developer for a new web browser. It obviously needs the capability to run JavaScript.

To make your product stand out from the competition, your boss proposes you implement a termination check: any non-terminating JavaScript programs can then be rejected, without being run.

If you succeed, your salary will be doubled. But if you fail, you’d have to look for a new job.

Should you accept?
Example: The Halting Problem (1)

Consider the following program. Does it terminate for all values of \(n \geq 1 \)?

```java
while (n > 1) {
    if even(n) {
        n = n / 2;
    } else {
        n = n * 3 + 1;
    }
}
```
Example: The Halting Problem (2)

Not as easy to answer as it might first seem.
Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with $n = 7$, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with $n = 7$, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

In fact, for all numbers that have been tried (a lot!), it does terminate . . .
Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with $n = 7$, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

In fact, for all numbers that have been tried (a lot!), it does terminate . . .

. . . but no one has ever been able to prove that it always terminates!
Example: The Halting Problem (3)

The following important decidability result should then perhaps not come as a total surprise:
Example: The Halting Problem (3)

The following important decidability result should then perhaps not come as a total surprise:

It is impossible to write a program that decides if another, arbitrary, program terminates (halts) or not.
The following important decidability result should then perhaps not come as a total surprise:

It is impossible to write a program that decides if another, arbitrary, program terminates (halts) or not.

What might be surprising is that it *is* possible to *prove* such a result. This was first done by the British mathematician *Alan Turing* using Turing Machines.
Alan Turing (1912–1954):
Alan Turing (1912–1954):

- Introduced an abstract model of computation, *Turing Machines*, to give a precise definition of what problems that can be solved by a computer.
Alan Turing (1912–1954):

- Introduced an abstract model of computation, *Turing Machines*, to give a precise definition of what problems that can be solved by a computer.
- Instrumental in the success of British code breaking efforts during WWII.
Noam Chomsky (1928–):
Noam Chomsky (1928–):

- American linguist who introduced Context Free Grammars in an attempt to describe natural languages formally.
Noam Chomsky (1928–):

- American linguist who introduced Context Free Grammars in an attempt to describe natural languages formally.
- Also introduced the Chomsky Hierarchy which classifies grammars and languages and their descriptive power.
The Chomsky Hierarchy

All languages

Type 0 or recursively enumerable languages

Decidable languages
Turing machines

Type 1 or context sensitive languages

Type 2 or context free languages
pushdown automata

Type 3 or regular languages
finite automata
Languages

The terms *language* and *word* are used in a strict technical sense in this course:
The terms *language* and *word* are used in a strict technical sense in this course:

- A *language* is a (possibly infinite) set of words.
Languages

The terms *language* and *word* are used in a strict technical sense in this course:

- A *language* is a (possibly infinite) set of words.
- A *word* is a *finite* sequence (or string) of symbols.
The terms *language* and *word* are used in a strict technical sense in this course:

- A *language* is a (possibly infinite) set of words.
- A *word* is a *finite* sequence (or string) of symbols.

ϵ denotes the *empty word*, the sequence of zero symbols.
Languages

The terms *language* and *word* are used in a strict technical sense in this course:

- A *language* is a (possibly infinite) set of words.
- A *word* is a *finite* sequence (or string) of symbols.

\(\epsilon \) denotes the *empty word*, the sequence of zero symbols.

The term *string* is often used interchangeably with the term *word*.
Symbols and Alphabets

What is a symbol, then?
Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Σ which is a finite set.
Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an *alphabet* Σ which is a *finite* set.

A common (and important) instance is $\Sigma = \{0, 1\}$.
Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an *alphabet* Σ which is a *finite* set.

A common (and important) instance is $\Sigma = \{0, 1\}$.

ϵ, the empty word, is *never* a symbol of an alphabet.
Languages: Examples

alphabet \(\Sigma = \{a, b\} \)

words ?
Languages: Examples

alphabet $\Sigma = \{a, b\}$

words $\epsilon, a, b, aa, ab, ba, bb,$
Languages: Examples

alphabet \[\Sigma = \{ a, b \} \]
words
\[\epsilon, a, b, aa, ab, ba, bb, \]
\[aaa, aab, aba, abb, baa, bab, \ldots \]
Languages: Examples

alphabet \(\Sigma = \{ a, b \} \)

words \(\epsilon, a, b, aa, ab, ba, bb, \)
\(aaa, aab, aba, abb, baa, bab, \ldots \)

languages ?
Languages: Examples

alphabet \(\Sigma = \{ a, b \} \)

words \(\epsilon, a, b, aa, ab, ba, bb, \)

\(aaa, aab, aba, abb, baa, bab, \ldots \)

languages \(\emptyset, \{ \epsilon \}, \{ a \}, \{ b \}, \{ a, aa \}, \)
Languages: Examples

alphabet
\[\Sigma = \{a, b\} \]

words
\[\epsilon, a, b, aa, ab, ba, bb, \]
\[aaaa, aab, aba, abb, baa, bab, \ldots \]

languages
\[\emptyset, \{\epsilon\}, \{a\}, \{b\}, \{a, aa\}, \]
\[\{\epsilon, a, aa, aaaa\}, \]
Languages: Examples

alphabet

\[\Sigma = \{ a, b \} \]

words

\[\epsilon, a, b, aa, ab, ba, bb, \]

\[aaa, aab, aba, abb, baa, bab, \ldots \]

languages

\[\emptyset, \{ \epsilon \}, \{ a \}, \{ b \}, \{ a, aa \}, \]

\[\{ \epsilon, a, aa, aaaa \}, \]

\[\{ a^n | n \geq 0 \}, \]
Languages: Examples

alphabet \(\Sigma = \{ a, b \} \)

words \(\epsilon, a, b, aa, ab, ba, bb, \ldots \)

languages \(\emptyset, \{ \epsilon \}, \{ a \}, \{ b \}, \{ a, aa \}, \{ \epsilon, a, aa, aaa \}, \{ a^n \mid n \geq 0 \}, \{ a^n b^n \mid n \geq 0, n \text{ even} \} \)
Languages: Examples

alphabet \[\Sigma = \{ a, b \} \]

words \[\varepsilon, a, b, aa, ab, ba, bb, \]
\[aaa, aab, aba, abb, baa, bab, \ldots \]

languages \[\emptyset, \{ \varepsilon \}, \{ a \}, \{ b \}, \{ a, aa \}, \]
\[\{ \varepsilon, a, aa, aaa \}, \]
\[\{ a^n | n \geq 0 \}, \]
\[\{ a^n b^n | n \geq 0, n \text{ even} \} \]

Note the distinction between \(\varepsilon \), \(\emptyset \), and \(\{ \varepsilon \} \)!
Exercises

• Is the set of natural numbers, \mathbb{N}, a possible alphabet? Why/why not?
Exercises

• Is the set of natural numbers, \(\mathbb{N} \), a possible alphabet? Why/why not?

• What about the set of all natural numbers smaller than some given number \(n \)?
Exercises

- Is the set of natural numbers, \mathbb{N}, a possible alphabet? Why/why not?
- What about the set of all natural numbers smaller than some given number n?
- Suggest an alphabet of a handful of *drink ingredients*. What are the symbols of your alphabet, and how many are they?
Exercises

• Is the set of natural numbers, \(\mathbb{N} \), a possible alphabet? Why/why not?

• What about the set of all natural numbers smaller than some given number \(n \)?

• Suggest an alphabet of a handful of **drink ingredients**. What are the symbols of your alphabet, and how many are they?

• List some words over your alphabet?
Exercises

- Is the set of natural numbers, \mathbb{N}, a possible alphabet? Why/why not?
- What about the set of all natural numbers smaller than some given number n?
- Suggest an alphabet of a handful of drink ingredients. What are the symbols of your alphabet, and how many are they?
- List some words over your alphabet?
- What might an interesting language over your alphabet be? Does your language include all possible words over your alphabet?
Given an alphabet Σ we define the set Σ^* as set of words (or sequences) over Σ:

- The empty word $\epsilon \in \Sigma^*$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^*$, $xw \in \Sigma^*$.
- These are all elements in Σ^*.

This is called an **inductive definition**.
All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ^* as set of words (or sequences) over Σ:

- The empty word $\epsilon \in \Sigma^*$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^*$, $xw \in \Sigma^*$.
- These are all elements in Σ^*.

This is called an *inductive definition*.

Is Σ^* always infinite?
All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ^* as set of words (or sequences) over Σ:

- The empty word $\varepsilon \in \Sigma^*$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^*$, $xw \in \Sigma^*$.
- These are all elements in Σ^*.

This is called an **inductive definition**.

Is Σ^* always infinite? Always non-empty?
All Words over an Alphabet (2)

Example: Given $\Sigma = \{0, 1\}$, some elements of Σ^* are

- ε (the empty word)
- 0, 1
- 00, 10, 01, 11
- 000, 100, 010, 110, 001, 101, 011, 111
- ...
All Words over an Alphabet (2)

Example: Given $\Sigma = \{0, 1\}$, some elements of Σ^* are

- ϵ (the empty word)
- 0, 1
- 00, 10, 01, 11
- 000, 100, 010, 110, 001, 101, 011, 111
- ...

We are just applying the inductive definition.
All Words over an Alphabet (2)

Example: Given $\Sigma = \{0, 1\}$, some elements of Σ^* are

- ϵ (the empty word)
- 0, 1
- 00, 10, 01, 11
- 000, 100, 010, 110, 001, 101, 011, 111
- ...

We are just applying the inductive definition.

Note: although there are infinitely many words in Σ^* (when $\Sigma \neq \emptyset$), each word has a finite length!
Concatenation of Words (1)

An important operation on Σ^* is concatenation:

given $w, v \in \Sigma^*$, their concatenation $wv \in \Sigma^*$.

For example, concatenation of ab and ba yields $abba$.
An important operation on $$\Sigma^*$$ is **concatenation**: given $$w, v \in \Sigma^*$$, their concatenation $$wv \in \Sigma^*$$.

For example, concatenation of $$ab$$ and $$ba$$ yields $$abba$$.

This operation can be defined by primitive recursion:

$$\epsilon v = v$$

$$(xw)v = x(wv)$$
Concatenation of Words (2)

Concatenation is associative and has unit ϵ:

$$u(vw) = (uv)w$$

$$\epsilon u = u = u \epsilon$$

where u, v, w are words.
Languages Revisited

The notion of a language L of a set of words over an alphabet Σ can now be made precise:
The notion of a language L of a set of words over an alphabet Σ can now be made precise:

- $L \subseteq \Sigma^*$,
The notion of a language L of a set of words over an alphabet Σ can now be made precise:

- $L \subseteq \Sigma^*$, or equivalently
- $L \in \mathcal{P}(\Sigma^*)$.
Examples of Languages (1)

Some examples of languages:

- [Examples of languages continued...]

G52MAMachines and Their LanguagesLecture 1 – p.31/37
Examples of Languages (1)

Some examples of languages:

- The set \{0010, 00000000, \epsilon\} is a language over \(\Sigma = \{0, 1\}\).
Examples of Languages (1)

Some examples of languages:

- The set \(\{0010, 00000000, \epsilon\} \) is a language over \(\Sigma = \{0, 1\} \).
 This is an example of a \textit{finite} language.
Examples of Languages (1)

Some examples of languages:

- The set $\{0010, 00000000, \epsilon\}$ is a language over $\Sigma = \{0, 1\}$. This is an example of a finite language.

- The set of words with odd length over $\Sigma = \{1\}$. (Finite or infinite?)
Some examples of languages:

- The set \(\{0010, 00000000, \epsilon\} \) is a language over \(\Sigma = \{0, 1\} \). This is an example of a \textit{finite} language.

- The set of words with odd length over \(\Sigma = \{1\} \). (Finite or infinite?)

- The set of words that contain the same number of 0s and 1s is a language over \(\Sigma = \{0, 1\} \). (Finite or infinite?)
Examples of Languages (2)

- The set of palindromes (words that read the same forwards and backwards, like \textit{abba}) is a language for any alphabet.
Examples of Languages (2)

- The set of palindromes (words that read the same forwards and backwards, like *abba*) is a language for any alphabet.
- The set of correct Java programs. This is a language over the set of UNICODE characters.
Examples of Languages (2)

- The set of palindromes (words that read the same forwards and backwards, like \texttt{abba}) is a language for any alphabet.

- The set of correct Java programs. This is a language over the set of UNICODE characters.

- The set of programs that, if executed successfully on a Windows machine, prints the text "Hello World!" in a window. This is a language over \(\Sigma = \{0, 1\} \).
Concatenation of Languages (1)

Concatenation of words is extended to languages by:

\[MN = \{ uv \mid u \in M \land v \in N \} \]

Example:

\[
\begin{align*}
M &= \{ \epsilon, a, aa \} \\
N &= \{ b, c \} \\
MN &=
\end{align*}
\]
Concatenation of Languages (1)

Concatenation of words is extended to languages by:

\[MN = \{uv \mid u \in M \land v \in N\} \]

Example:

\[M = \{\varepsilon, a, aa\} \]
\[N = \{b, c\} \]
\[MN = \{uv \mid u \in \{\varepsilon, a, aa\} \land v \in \{b, c\}\} \]
Concatenation of Languages (1)

Concatenation of words is extended to languages by:

\[MN = \{ uv \mid u \in M \land v \in N \} \]

Example:

\[
egin{align*}
M &= \{ \epsilon, a, aa \} \\
N &= \{ b, c \} \\
MN &= \{ uv \mid u \in \{ \epsilon, a, aa \} \land v \in \{ b, c \} \} \\
&= \{ \epsilon b, \epsilon c, ab, ac, aab, aac \} \\
&= \\
\end{align*}
\]
Concatenation of Languages (1)

Concatenation of words is extended to languages by:

\[MN = \{uv \mid u \in M \land v \in N\} \]

Example:

\[M = \{\epsilon, a, aa\} \]
\[N = \{b, c\} \]
\[MN = \{uv \mid u \in \{\epsilon, a, aa\} \land v \in \{b, c\}\} \]
\[= \{\epsilon b, \epsilon c, ab, ac, aab, aac\} \]
\[= \{b, c, ab, ac, aab, aac\} \]
Concatenation of Languages (2)

- Concatenation of languages is associative:
 \[L(MN) = (LM)N \]
- Concatenation of languages has zero \(\emptyset \):
 \[L\emptyset = \emptyset = \emptyset L \]
- Concatenation of languages has unit \(\{\epsilon\} \):
 \[L\{\epsilon\} = L = \{\epsilon\}L \]
Concatenation of Languages (3)

- Concatenation distributes through set union:

\[L(M \cup N) = LM \cup LN \]
\[(L \cup M)N = LN \cup MN \]
Concatenation of Languages (3)

- Concatenation distributes through set union:

\[L(M \cup N) = LM \cup LN \]
\[(L \cup M)N = LN \cup MN \]

But not through intersection! \[L(M \cap N) \neq LM \cap LN \]

Counterexample: \[L = \{ \epsilon, a \}, M = \{ \epsilon \}, N = \{ a \}: \]

\[L(M \cap N) = L\emptyset = \emptyset \]
\[LM \cap LN = \{ \epsilon, a \} \cap \{ a, aa \} = \{ a \} \]
Concatenation of Languages (4)

- Exponent notation is used to denote iterated concatenation:
 - $L^1 = L$
 - $L^2 = LL$
 - $L^3 = LLL$
 - ...

- By definition: $L^0 = \{\epsilon\}$ (for any language, incl. \emptyset)

$$L^* = \bigcup_{n=0}^{\infty} L^n$$
Language Membership

Fundamental question for a language $L: w \in L$?
Language Membership

Fundamental question for a language L: $w \in L$?

- L finite:
Language Membership

Fundamental question for a language L: $w \in L$?

- L finite: ?
Language Membership

Fundamental question for a language L: $w \in L$?

- L finite: Easy! (Enumerate L and check)
Language Membership

Fundamental question for a language \(L: w \in L? \)

- \(L \) finite: Easy! (Enumerate \(L \) and check)
- \(L \) infinite:
Language Membership

Fundamental question for a language L: $w \in L$?

- L finite: Easy! (Enumerate L and check)
- L infinite: ?
Language Membership

Fundamental question for a language L: $w \in L$?

- L finite: Easy! (Enumerate L and check)
- L infinite: ?

We need:

- A **finite** (and preferably concise) formal **description** of L.
Language Membership

Fundamental question for a language \(L: w \in L? \)

- \(L \) finite: Easy! (Enumerate \(L \) and check)
- \(L \) infinite: ?

We need:

- A \textit{finite} (and preferably concise) formal \textit{description} of \(L \).
- An algorithmic \textit{method to decide} if \(w \in L \) given a suitable description.
Language Membership

Fundamental question for a language L: $w \in L$?

- L finite: Easy! (Enumerate L and check)
- L infinite: ?

We need:

- A *finite* (and preferably concise) formal *description* of L.
- An algorithmic *method to decide* if $w \in L$ given a suitable description.

Various approaches to achieve this will be key a theme throughout the module.