G52MAL Machines and Their Languages Lecture 3

Non-deterministic Finite Automata (NFA)

Henrik Nilsson

University of Nottingham

G52MALMachines and Their LanguagesLecture 3 - p.1/4

Recap: Extended Transition Function

The *Extended Transition Function* is defined on a state and a *word* (string of symbols) instead of on a single symbol.

For a DFA $A = (Q, \Sigma, \delta, q_0, F)$, the extended transition function is defined by:

$$\hat{\delta} \in Q \times \Sigma^* \to Q$$

$$\hat{\delta}(q, \epsilon) = q$$

$$\hat{\delta}(q, xw) = \hat{\delta}(\delta(q, x), w)$$

where $q \in Q$, $x \in \Sigma$, $w \in \Sigma^*$.

Recap: Formal Definition of DFA

Formally, a *Deterministic Finite Automaton* or *DFA* is defined by a 5-tuple

$$(Q, \Sigma, \delta, q_0, F)$$

where

Q: Finite set of States

 Σ : Alphabet (finite set of symbols)

 $\delta \in Q \times \Sigma \to Q$: Transition Function

 $q_0 \in Q$: Initial or Start State

 $F \subseteq Q$: Accepting (or Final) States

G52MALMachines and Their LanguagesLecture 3 - p.2/4

Recap: Language of a DFA

The *language* L(A) defined by a DFA A is the set or words *accepted* by the DFA. For a DFA

$$A = (Q, \Sigma, \delta, q_0, F)$$

the language is defined by

$$L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$