Non-deterministic Finite Automata (NFA)

Henrik Nilsson

University of Nottingham
Recap: Formal Definition of DFA

Formally, a **Deterministic Finite Automaton** or **DFA** is defined by a 5-tuple

$$(Q, \Sigma, \delta, q_0, F)$$

where

- Q: **Finite** set of States
- Σ: Alphabet (finite set of symbols)
- $\delta \in Q \times \Sigma \rightarrow Q$: Transition Function
- $q_0 \in Q$: Initial or Start State
- $F \subseteq Q$: Accepting (or Final) States
Recap: Extended Transition Function

The **Extended Transition Function** is defined on a state and a *word* (string of symbols) instead of on a single symbol.

For a DFA $A = (Q, \Sigma, \delta, q_0, F)$, the extended transition function is defined by:

$$
\hat{\delta} \in Q \times \Sigma^* \rightarrow Q
$$

$$
\hat{\delta}(q, \epsilon) = q
$$

$$
\hat{\delta}(q, xw) = \hat{\delta}(\delta(q, x), w)
$$

where $q \in Q$, $x \in \Sigma$, $w \in \Sigma^*$.
Recap: Language of a DFA

The *language* $L(A)$ defined by a DFA A is the set of words *accepted* by the DFA. For a DFA

$$A = (Q, \Sigma, \delta, q_0, F)$$

the language is defined by

$$L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$