G52MAL
Machines and Their Languages
Lecture 4

Nondeterministic Finite Automata (NFA)

Henrik Nilsson

University of Nottingham
Recap: Formal Definition of NFA (1)

Formally, a **Nondeterministic Finite Automaton** or **NFA** is defined by a 5-tuple

\[(Q, \Sigma, \delta, S, F)\]

where

- \(Q\): Finite set of States
- \(\Sigma\): Alphabet (finite set of symbols)
- \(\delta \in Q \times \Sigma \rightarrow \mathcal{P}(Q)\): Transition Function
- \(S \subseteq Q\): Initial States
- \(F \subseteq Q\): Accepting (or Final) States
Recap: Formal Definition of NFA (2)

Note:
Recap: Formal Definition of NFA (2)

Note:

- The transition function maps a state and an input symbol to **zero or more** successor states. Thus an NFA has “choice”; hence “nondeterministic”.

G52MALMachines and Their LanguagesLecture 4 – p.3/8
Recap: Formal Definition of NFA (2)

Note:

- The transition function maps a state and an input symbol to **zero or more** successor states. Thus an NFA has “choice”; hence “nondeterministic”.

- However, nothing ambiguous about the **language** defined by an NFA! **Not** the case that some word $w \in L(A)$ sometimes, and $w \notin L(A)$ other times for some NFA A.
Recap: Formal Definition of NFA (2)

Note:

- The transition function maps a state and an input symbol to **zero or more** successor states. Thus an NFA has “choice”; hence “nondeterministic”.

- However, nothing ambiguous about the **language** defined by an NFA! **Not** the case that some word \(w \in L(A) \) sometimes, and \(w \notin L(A) \) other times for some NFA \(A \).

- How? By considering **all possible** states simultaneously.
Recap: Extended Transition Function

For an NFA, The *Extended Transition Function* is defined on a *set* of states and a *word* (string of symbols).

For a NFA $A = (Q, \Sigma, \delta, S, F)$, the extended transition function is defined by:

\[
\hat{\delta} \in \mathcal{P}(Q) \times \Sigma^* \rightarrow \mathcal{P}(Q)
\]

\[
\hat{\delta}(P, \epsilon) = P
\]

\[
\hat{\delta}(P, xw) = \hat{\delta}(\bigcup\{\delta(q, x) \mid q \in P\}, w)
\]

where $P \in \mathcal{P}(Q)$ (or $P \subseteq Q$), $x \in \Sigma$, $w \in \Sigma^*$.
The **language** $L(A)$ defined by an NFA A is the set or words **accepted** by the NFA. For an NFA

$$A = (Q, \Sigma, \delta, S, F)$$

the language is defined by

$$L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(S, w) \cap F \neq \emptyset \}$$
The Subset Construction (1)

Observations:
The Subset Construction (1)

Observations:

- An NFA can be in one of a set of states.
Observations:

- An NFA can be in one of a set of states.
- When reading an input symbol, the machine enters one of a new set of states.
The Subset Construction (1)

Observations:

• An NFA can be in one of a set of states.
• When reading an input symbol, the machine enters one of a new set of states.
• Which are the sets of possible states?
The Subset Construction (1)

Observations:

• An NFA can be in one of a set of states.
• When reading an input symbol, the machine enters one of a new set of states.
• Which are the sets of possible states?
• Each set is a subset of Q, so the set of possible states is (at most) $\mathcal{P}(Q)$.
The Subset Construction (1)

Observations:

• An NFA can be in one of a set of states.
• When reading an input symbol, the machine enters one of a new set of states.
• Which are the sets of possible states?
• Each set is a subset of \(Q \), so the set of possible states is (at most) \(\mathcal{P}(Q) \).
• But \(Q \) is finite. Thus \(\mathcal{P}(Q) \) is finite too!
Observations:

• An NFA can be in one of a set of states.
• When reading an input symbol, the machine enters one of a new set of states.
• Which are the sets of possible states?
• Each set is a subset of Q, so the set of possible states is (at most) $\mathcal{P}(Q)$.
• But Q is finite. Thus $\mathcal{P}(Q)$ is finite too!
• There may be lots of states as $|\mathcal{P}(Q)| = 2^{|Q|}$. But the number of states is finite!
The Subset Construction (2)

- We can thus *convert* an NFA into a DFA by considering each possible set of NFA states as a single DFA state!
The Subset Construction (3)

Given an NFA A:

$$A = (Q, \Sigma, \delta, S, F)$$

we construct the equivalent DFA $D(A)$ as:

$$D(A) = (\mathcal{P}(Q), \Sigma, \delta_{D(A)}, S, F_{D(A)})$$

where

$$\delta_{D(A)}(P, x) = \bigcup \{\delta(q, x) | q \in P\}$$

$$F_{D(A)} = \{P \in \mathcal{P}(Q) | P \cap F \neq \emptyset\}$$
The Subset Construction (3)

Given an NFA A:

$$A = (Q, \Sigma, \delta, S, F)$$

we construct the equivalent DFA $D(A)$ as:

$$D(A) = (\mathcal{P}(Q), \Sigma, \delta_{D(A)}, S, F_{D(A)})$$

where

$$\delta_{D(A)}(P, x) = \bigcup \{ \delta(q, x) \mid q \in P \}$$

$$F_{D(A)} = \{ P \in \mathcal{P}(Q) \mid P \cap F \neq \emptyset \}$$

(Cf. def. $\hat{\delta}$ and language for NFA!)

G52MALMachines and Their LanguagesLecture 4 – p.8/8