G52MAL
Machines and Their Languages
Lecture 7
Minimization of Finite Automata

Henrik Nilsson

University of Nottingham
Minimization? What and Why?
Minimization? What and Why?

Q: Is there a unique smallest DFA for recognizing a particular regular language?
Minimization? What and Why?

Q: Is there a unique smallest DFA for recognizing a particular regular language?

A: Yes! (Up to renaming of states.)
Minimization? What and Why?

Q: Is there a unique smallest DFA for recognizing a particular regular language?

A: - Yes! (Up to renaming of states.)
- Moreover, this minimal DFA can be found mechanically.
Minimization? What and Why?

Q: Is there a unique smallest DFA for recognizing a particular regular language?

A: - Yes! (Up to renaming of states.)
 - Moreover, this minimal DFA can be found mechanically.

Why useful?
Minimization? What and Why?

Q: Is there a unique smallest DFA for recognizing a particular regular language?

A: - Yes! (Up to renaming of states.)
 - Moreover, this minimal DFA can be found mechanically.

Why useful?

- Small improves efficiency if we want to implement a DFA.
Minimization? What and Why?

Q: Is there a unique smallest DFA for recognizing a particular regular language?

A: - Yes! (Up to renaming of states.)
- Moreover, this minimal DFA can be found mechanically.

Why useful?

- Small improves efficiency if we want to implement a DFA.
- Unique means it is easy to check if two automata really are the same.
Applications (1)

Applying all we know after this lecture, we can for example:

- Given a regular expression E, construct the smallest possible DFA for recognizing the language:

$$\text{minimize}(D(N(E)))$$
Applications (1)

Applying all we know after this lecture, we can for example:

- Given a regular expression E, construct the smallest possible DFA for recognizing the language:

$$\text{minimize}(D(N(E)))$$

This is in essence what tools like Lex and Flex do generate efficient scanners from declarative specifications stated in terms of regular expressions.
Applications (2)

- Given two regular expressions E and F, check if they denote the same language:

$$\text{minimize}(D(N(E))) = \text{minimize}(D(N(F)))$$

where $=$ is a structural comparison of DFAs.
Applications (2)

- Given two regular expressions E and F, check if they denote the same language:

\[
\text{minimize}(D(N(E))) = \text{minimize}(D(N(F)))
\]

where $=$ is a structural comparison of DFAs.

Not the only or necessarily the best way, but it is one way.
Testing Equivalence of States

For DFA \((Q, \Sigma, \delta, q_0, F)\), states \(p, q \in Q\) are \textit{equivalent} iff \(\forall w \in \Sigma^* \cdot \hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F\)
Testing Equivalence of States

For DFA $(Q, \Sigma, \delta, q_0, F)$, states $p, q \in Q$ are **equivalent** iff $\forall w \in \Sigma^* . \hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$

If two states are not equivalent, then they are **distinguishable** on at least one word w.
Testing Equivalence of States

For DFA \((Q, \Sigma, \delta, q_0, F)\), states \(p, q \in Q\) are equivalent iff
\[\forall w \in \Sigma^* . \hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F \]

If two states are not equivalent, then they are distinguishable on at least one word \(w\).

Note that an accepting state is always distinguishable from a non-accepting state on the empty word \(\epsilon\). To see this, assume \(p \in F, q \notin F\). Then:
\[
\hat{\delta}(p, \epsilon) = p \in F \\
\hat{\delta}(q, \epsilon) = q \notin F
\]
The Table-filling Algorithm (1)

Systematic discovery of distinguishable state pairs for DFA \((Q, \Sigma, \delta, q_0, F)\):

BASIS:

For \(p, q \in Q\), if

\[(p \in F \land q \notin F) \lor (p \notin F \land q \in F)\]

then \((p, q)\) is a distinguishable state pair.
The Table-filling Algorithm (2)

INDUCTION:
For $p, q, r, s \in Q$, $a \in \Sigma$, if

$$(r, s) = (\hat{\delta}(p, a), \hat{\delta}(q, a))$$

a distinguishable state pair, then (p, q) is also a distinguishable state pair.

Theorem: If two states are not distinguishable by the table-filling algorithm, then they are equivalent.