G52MAL
 Machines and Their Languages Lecture 8
 Proving Languages Not to Be Regular

Henrik Nilsson

University of Nottingham

Are there Non-regular Languages?

The regular languages are those that can be recognized by finite automata; i.e. machines with finite memory.

Are there Non-regular Languages?

The regular languages are those that can be recognized by finite automata; i.e. machines with finite memory.

Are there languages that are not regular?

Are there Non-regular Languages?

The regular languages are those that can be recognized by finite automata; i.e. machines with finite memory.

Are there languages that are not regular?
Yes! One example:

$$
L=\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}
$$

Are there Non-regular Languages?

The regular languages are those that can be recognized by finite automata; i.e. machines with finite memory.

Are there languages that are not regular?
Yes! One example:

$$
L=\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}
$$

Why? Intuitively: Need to count arbitrarily far to check if any given word is accepted. We cannot count arbitrarily far if we only have a finite memory!

Could A Computer Decide L? (1)

How can we check if a word belongs to a non-regular langauge like

$$
L=\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}
$$

Could A Computer Decide L? (1)

How can we check if a word belongs to a non-regular langauge like

$$
L=\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}
$$

Can a computer do it?

Could A Computer Decide L? (1)

How can we check if a word belongs to a non-regular langauge like

$$
L=\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}
$$

Can a computer do it? Can you write a program to check if a given word $w \in L$? Would it work?

Could A Computer Decide L? (1)

How can we check if a word belongs to a non-regular langauge like

$$
L=\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}
$$

Can a computer do it? Can you write a program to check if a given word $w \in L$? Would it work?

- In theory, no! Anything we physically build is necessarily finite.

Could A Computer Decide L? (1)

How can we check if a word belongs to a non-regular langauge like

$$
L=\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}
$$

Can a computer do it? Can you write a program to check if a given word $w \in L$? Would it work?

- In theory, no! Anything we physically build is necessarily finite.
- In practice, of course! It doesn't take that many bits to count as far as we could possibly want.

Could A Computer Decide L? (2)

Example: 128 bits = 16 bytes. Assume a computer running at 1000 GHz , counting one symbol each 10^{-12} s.

Could A Computer Decide L? (2)

Example: 128 bits = 16 bytes. Assume a computer running at 1000 GHz , counting one symbol each 10^{-12} s.
How long before we need more bits to count further?

Could A Computer Decide L? (2)

Example: 128 bits = 16 bytes. Assume a computer running at 1000 GHz , counting one symbol each 10^{-12} s.
How long before we need more bits to count further?

About 10^{19} years, or 780 million times the currently estimated age of the universe (13.8 billion years).

Could A Computer Decide L? (3)

As an aside, the question if we can write a program to decide L is more subtle:

Could A Computer Decide L? (3)

As an aside, the question if we can write a program to decide L is more subtle:

- A programming language specification can conceivably be very abstract and not mention any specific limits on sizes.

Could A Computer Decide L? (3)

As an aside, the question if we can write a program to decide L is more subtle:

- A programming language specification can conceivably be very abstract and not mention any specific limits on sizes.
- A correct program can then be expressed in that it in theory could count arbitrarily far.

Could A Computer Decide L? (3)

As an aside, the question if we can write a program to decide L is more subtle:

- A programming language specification can conceivably be very abstract and not mention any specific limits on sizes.
- A correct program can then be expressed in that it in theory could count arbitrarily far.
- However, when this program is run we would sooner or later hit some limitation either due to the implementation of the language or due to the hardware we are running it on.

Today's Lecture

Bottom line: In practice, we can, up to a point, treat a computer as if it has infinite memory if it suits us.

Today's Lecture

Bottom line: In practice, we can, up to a point, treat a computer as if it has infinite memory if it suits us.

But how can we tell if a language is regular or not (i.e., if a DFA suffices to recognise it) or if we need a more general machine?

Today's Lecture

Bottom line: In practice, we can, up to a point, treat a computer as if it has infinite memory if it suits us.

But how can we tell if a language is regular or not (i.e., if a DFA suffices to recognise it) or if we need a more general machine?
That's the topic of today's lecture.

Today's Lecture

Bottom line: In practice, we can, up to a point, treat a computer as if it has infinite memory if it suits us.

But how can we tell if a language is regular or not (i.e., if a DFA suffices to recognise it) or if we need a more general machine?
That's the topic of today's lecture.
Key observation: Because a Finite Automaton has limited memory, any sufficiently long word in the language must contain repetitive patterns.

