Recap: Definition of CFG

A CFG \(G = (N, T, P, S) \) where

- \(N \) is a finite set of nonterminals (or variables or syntactic categories)
- \(T \) is a finite set of terminals
- \(N \cap T = \emptyset \) (disjoint)
- \(P \) is a finite set of productions of the form \(A \rightarrow \alpha \) where \(A \in N \) and \(\alpha \in (N \cup T)^* \)
- \(S \in N \) is the start symbol

Simple Arithmetic Expressions

\[SAE = (N = \{E, I, D\}, T = \{+, *, (,), 0, 1\}, P, E) \]
where \(P \) is given by:

\[
E \rightarrow E + E \\
| E * E \\
| (E) \\
| I \\
I \rightarrow DI | D \\
D \rightarrow 0 | 1
\]

Note: \(A \rightarrow \alpha | \beta \) shorthand for \(A \rightarrow \alpha, A \rightarrow \beta \).

Another Example: Java

The syntax of programming languages is invariably specified by CFGs.