G52MAL Machines and Their Languages Lecture 10 The Language of a CFG

Henrik Nilsson

University of Nottingham

Recap: Definition of CFG

A CFG G = (N, T, P, S) where

- N is a finite set of *nonterminals* (or variables or syntactic categories)
- T is a finite set of terminals
- $N \cap T = \emptyset$ (disjoint)
- *P* is a finite set of *productions* of the form $A \to \alpha$ where $A \in N$ and $\alpha \in (N \cup T)^*$
- $S \in N$ is the start symbol

Simple Arithmetic Expressions

 $SAE = (N = \{E, I, D\}, T = \{+, *, (,), 0, 1, ..., 9\}, P, E)$ where *P* is given by:

 $E \rightarrow E + E$ | E * E(E)| I $I \rightarrow DI \mid D$ $D \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$ Note: $A \to \alpha \mid \beta$ shorthand for $A \to \alpha$, $A \to \beta$.

Another Example: Java

- The syntax of programming languages is invariably specified by CFGs.
- Example: The Java Language Specification, Third Edition. Section 14.5, page 368 gives a CFG for Java statements.