
G52MAL

Machines and Their Languages
Lecture 14

The Language of a PDA

Henrik Nilsson

University of Nottingham

G52MALMachines and Their LanguagesLecture 14 – p.1/14

Recap: Definition of PDA

A PDA P = (Q,Σ,Γ, δ, q0, Z0, F) where

• Q is a finite set of states

• Σ is a finite set of input symbols

• Γ is a finite set of stack symbols

• δ ∈ Q× (Σ ∪ {ǫ})× Γ → Pfin(q × Γ∗) is the
transition function

• q0 ∈ Q is the initial state

• Z0 ∈ Γ is the initial stack symbol

• F ⊆ Q is the accepting states

G52MALMachines and Their LanguagesLecture 14 – p.2/14

PDA recognising {anbn | n ∈ N}

P1 = (Q = {q0, q1, q2}, Σ = {a, b},

Γ = {a,#}, δ, q0, Z0 = #, F = {q2})

where

δ(q0, a,#) = {(q0, a#)}

δ(q0, ǫ,#) = {(q2,#)}

δ(q0, a, a) = {(q0, aa)}

δ(q0, b, a) = {(q1, ǫ)}

δ(q1, b, a) = {(q1, ǫ)}

δ(q1, ǫ,#) = {(q2,#)}

δ(q, w, x) = ∅ everywhere else
G52MALMachines and Their LanguagesLecture 14 – p.3/14

Instantaneous Description (ID)

An Instantaneous Description (ID)

(q, w, γ) ∈ Q× Σ∗ × Γ∗

describes the state of a PDA computation.

G52MALMachines and Their LanguagesLecture 14 – p.4/14

Relations on IDs

⊢
P
⊆ ID × ID : Read:

id 1 ⊢
P
id 2

“PDA P can move in one step from id 1 to id 2.”

1. (q, xw, zγ) ⊢
P
(q′, w, αγ) if (q′, α) ∈ δ(q, x, z)

2. (q, w, zγ) ⊢
P
(q′, w, αγ) if (q′, α) ∈ δ(q, ǫ, z)

where q, q′ ∈ Q, x ∈ Σ, w ∈ Σ∗, z ∈ Γ, α, γ ∈ Γ∗

G52MALMachines and Their LanguagesLecture 14 – p.5/14

Example

Consider PDA P1 again on aabb:

(q0, aabb,#) ⊢
P1

(q0, abb, a#) as (q0, a#) ∈ δ(q0, a,#)

⊢
P1

(q0, bb, aa#) as (q0, aa) ∈ δ(q0, a, a)

⊢
P1

(q1, b, a#) as (q1, ǫ) ∈ δ(q0, b, a)

⊢
P1

(q1, ǫ,#) as (q1, ǫ) ∈ δ(q1, b, a)

⊢
P1

(q2, ǫ,#) as (q2,#) ∈ δ(q1, ǫ,#)

showing that P1 accepts aabb by final state as
q2 ∈ F and all input consumed.

G52MALMachines and Their LanguagesLecture 14 – p.6/14

Relations on IDs (cont.)

∗

⊢
P
⊆ ID × ID : The reflexive, transitive closure of

∗

⊢
p
.

Read:

id 1

∗

⊢
P
id 2

“PDA P can move from id 1 to id 2 in 0 or more steps.”

G52MALMachines and Their LanguagesLecture 14 – p.7/14

Relations on IDs (cont.)

∗

⊢
P
⊆ ID × ID : The reflexive, transitive closure of

∗

⊢
p
.

Read:

id 1

∗

⊢
P
id 2

“PDA P can move from id 1 to id 2 in 0 or more steps.”

Examples:

(q0, aabb,#)
∗

⊢
P1

(q2, ǫ,#)

G52MALMachines and Their LanguagesLecture 14 – p.7/14

Relations on IDs (cont.)

∗

⊢
P
⊆ ID × ID : The reflexive, transitive closure of

∗

⊢
p
.

Read:

id 1

∗

⊢
P
id 2

“PDA P can move from id 1 to id 2 in 0 or more steps.”

Examples:

(q0, aabb,#)
∗

⊢
P1

(q2, ǫ,#)

For any PDA P and ID id : id
∗

⊢
P
id

G52MALMachines and Their LanguagesLecture 14 – p.7/14

The Language of a PDA (1)

Two “flavours” of PDAs. Acceptance by final state:

L(P) = {w | (q0, w, Z0)
∗

⊢
P
(q, ǫ, γ) ∧ q ∈ F}

G52MALMachines and Their LanguagesLecture 14 – p.8/14

The Language of a PDA (1)

Two “flavours” of PDAs. Acceptance by final state:

L(P) = {w | (q0, w, Z0)
∗

⊢
P
(q, ǫ, γ) ∧ q ∈ F}

Acceptance by empty stack:

L(P) = {w | (q0, w, Z0)
∗

⊢
P
(q, ǫ, ǫ)}

(F plays no role and can be left out from the
definition of P .)

G52MALMachines and Their LanguagesLecture 14 – p.8/14

The Language of a PDA (2)

A PDA that accepts by final state can be
converted to an equivalent PDA that accepts by
empty stack and vice versa.

G52MALMachines and Their LanguagesLecture 14 – p.9/14

The Language of a PDA (2)

A PDA that accepts by final state can be
converted to an equivalent PDA that accepts by
empty stack and vice versa.

Both types of PDAs thus describe the same class
of languages, the Context-Free Languages
(CFLs).

G52MALMachines and Their LanguagesLecture 14 – p.9/14

PDAs and CFGs

Theorem: For a language L ⊆ Σ∗,

L = L(G) for a CFG G iff L = L(P) for a PDA P .

I.e., the CFGs and the PDAs describe the same
class of languages.

Proof: By constructing a PDA P from a CFG G
and vice versa such that L(P) = L(G).

We will look at constructing a PDA from a CFG.

G52MALMachines and Their LanguagesLecture 14 – p.10/14

Translating a CFG into a PDA

Given CFG G = (N,T, P, S),

P (G) = ({q0},Σ = T,Γ = N ∪ T, δ, q0, Z0 = S)

where

δ(q0, ǫ, A) = {(q0, α) | A → α ∈ P}

δ(q0, a, a) = {(q0, ǫ)} for all a ∈ T

δ(q0, w, γ) = ∅ everywhere else

Acceptance by empty stack.

G52MALMachines and Their LanguagesLecture 14 – p.11/14

Translating a CFG into a PDA

Given CFG G = (N,T, P, S),

P (G) = ({q0},Σ = T,Γ = N ∪ T, δ, q0, Z0 = S)

where

δ(q0, ǫ, A) = {(q0, α) | A → α ∈ P}

δ(q0, a, a) = {(q0, ǫ)} for all a ∈ T

δ(q0, w, γ) = ∅ everywhere else

Acceptance by empty stack.

Note: Highly non-deterministic!

G52MALMachines and Their LanguagesLecture 14 – p.11/14

Example: Translating a CFG into a PDA

Consider the grammar G2:

A → 0A0 | 1A1 | ǫ

G52MALMachines and Their LanguagesLecture 14 – p.12/14

Example: Translating a CFG into a PDA

Consider the grammar G2:

A → 0A0 | 1A1 | ǫ

Contruct PDA P2 = P (G2). On white board.

G52MALMachines and Their LanguagesLecture 14 – p.12/14

Deterministic PDAs (DPDAs) (1)

A DPDA is a PDA that has no choice:

A PDA P = (Q,Σ,Γ, δ, q0, Z0, F) is deterministic
iff
|δ(q, x, z)| + |δ(q, ǫ, z| ≤ 1 for all q ∈ Q, x ∈ Σ, z ∈ Γ.

G52MALMachines and Their LanguagesLecture 14 – p.13/14

Deterministic PDAs (DPDAs) (1)

A DPDA is a PDA that has no choice:

A PDA P = (Q,Σ,Γ, δ, q0, Z0, F) is deterministic
iff
|δ(q, x, z)| + |δ(q, ǫ, z| ≤ 1 for all q ∈ Q, x ∈ Σ, z ∈ Γ.

Example: P2 is not a DPDA.
E.g. |δ(q0, 0, A)| + |δ(q0, ǫ, A)| = 0 + 3 6≤ 1

G52MALMachines and Their LanguagesLecture 14 – p.13/14

Deterministic PDAs (DPDAs) (2)

DPDAs important because can be implemented
efficiently. (See lectures on predictive recursive
descent parsing.)

G52MALMachines and Their LanguagesLecture 14 – p.14/14

Deterministic PDAs (DPDAs) (2)

DPDAs important because can be implemented
efficiently. (See lectures on predictive recursive
descent parsing.)

But unfortunately:

Theorem: The set of languages accepted by the
DPDAs is a strict subset of the languages
accepted by PDAs: L(DPDA) ⊂ L(PDA) = CFL.

G52MALMachines and Their LanguagesLecture 14 – p.14/14

Deterministic PDAs (DPDAs) (2)

DPDAs important because can be implemented
efficiently. (See lectures on predictive recursive
descent parsing.)

But unfortunately:

Theorem: The set of languages accepted by the
DPDAs is a strict subset of the languages
accepted by PDAs: L(DPDA) ⊂ L(PDA) = CFL.

However, most context-free langauges of
practical importance can be described by
DPDAs.

G52MALMachines and Their LanguagesLecture 14 – p.14/14

	Recap: Definition of PDA
	PDA recognising ${ a^nb^n ; | ; n in mathbb {N}}$
	Instantaneous Description (ID)
	Relations on IDs
	Example
	Relations on IDs (cont.)
	The Language of a PDA (1)
	The Language of a PDA (2)
	PDAs and CFGs
	Translating a CFG into a PDA
	Example: Translating a CFG into a PDA
	Deterministic PDAs (DPDAs)
(1)
	Deterministic PDAs (DPDAs)
(2)

