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Recap: Definition of PDA

A PDA P = (Q,Σ,Γ, δ, q0, Z0, F ) where

• Q is a finite set of states

• Σ is a finite set of input symbols

• Γ is a finite set of stack symbols

• δ ∈ Q× (Σ ∪ {ǫ})× Γ → Pfin(q × Γ∗) is the
transition function

• q0 ∈ Q is the initial state

• Z0 ∈ Γ is the initial stack symbol

• F ⊆ Q is the accepting states
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PDA recognising {anbn | n ∈ N}

P1 = ( Q = {q0, q1, q2}, Σ = {a, b},

Γ = {a,#}, δ, q0, Z0 = #, F = {q2} )

where

δ(q0, a,#) = {(q0, a#)}

δ(q0, ǫ,#) = {(q2,#)}

δ(q0, a, a) = {(q0, aa)}

δ(q0, b, a) = {(q1, ǫ)}

δ(q1, b, a) = {(q1, ǫ)}

δ(q1, ǫ,#) = {(q2,#)}

δ(q, w, x) = ∅ everywhere else
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Instantaneous Description (ID)

An Instantaneous Description (ID)

(q, w, γ) ∈ Q× Σ∗ × Γ∗

describes the state of a PDA computation.
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Relations on IDs

⊢
P
⊆ ID × ID : Read:

id 1 ⊢
P
id 2

“PDA P can move in one step from id 1 to id 2.”

1. (q, xw, zγ) ⊢
P
(q′, w, αγ) if (q′, α) ∈ δ(q, x, z)

2. (q, w, zγ) ⊢
P
(q′, w, αγ) if (q′, α) ∈ δ(q, ǫ, z)

where q, q′ ∈ Q, x ∈ Σ, w ∈ Σ∗, z ∈ Γ, α, γ ∈ Γ∗
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Example

Consider PDA P1 again on aabb:

(q0, aabb,#) ⊢
P1

(q0, abb, a#) as (q0, a#) ∈ δ(q0, a,#)

⊢
P1

(q0, bb, aa#) as (q0, aa) ∈ δ(q0, a, a)

⊢
P1

(q1, b, a#) as (q1, ǫ) ∈ δ(q0, b, a)

⊢
P1

(q1, ǫ,#) as (q1, ǫ) ∈ δ(q1, b, a)

⊢
P1

(q2, ǫ,#) as (q2,#) ∈ δ(q1, ǫ,#)

showing that P1 accepts aabb by final state as
q2 ∈ F and all input consumed.

G52MALMachines and Their LanguagesLecture 14 – p.6/14



Relations on IDs (cont.)

∗

⊢
P
⊆ ID × ID : The reflexive, transitive closure of

∗

⊢
p
.

Read:

id 1

∗

⊢
P
id 2

“PDA P can move from id 1 to id 2 in 0 or more steps.”
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Relations on IDs (cont.)

∗

⊢
P
⊆ ID × ID : The reflexive, transitive closure of

∗

⊢
p
.

Read:

id 1

∗

⊢
P
id 2

“PDA P can move from id 1 to id 2 in 0 or more steps.”

Examples:

(q0, aabb,#)
∗

⊢
P1

(q2, ǫ,#)
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Relations on IDs (cont.)

∗

⊢
P
⊆ ID × ID : The reflexive, transitive closure of

∗

⊢
p
.

Read:

id 1

∗

⊢
P
id 2

“PDA P can move from id 1 to id 2 in 0 or more steps.”

Examples:

(q0, aabb,#)
∗

⊢
P1

(q2, ǫ,#)

For any PDA P and ID id : id
∗

⊢
P
id
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The Language of a PDA (1)

Two “flavours” of PDAs. Acceptance by final state:

L(P ) = {w | (q0, w, Z0)
∗

⊢
P
(q, ǫ, γ) ∧ q ∈ F}
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The Language of a PDA (1)

Two “flavours” of PDAs. Acceptance by final state:

L(P ) = {w | (q0, w, Z0)
∗

⊢
P
(q, ǫ, γ) ∧ q ∈ F}

Acceptance by empty stack:

L(P ) = {w | (q0, w, Z0)
∗

⊢
P
(q, ǫ, ǫ)}

(F plays no role and can be left out from the
definition of P .)
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The Language of a PDA (2)

A PDA that accepts by final state can be
converted to an equivalent PDA that accepts by
empty stack and vice versa.
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The Language of a PDA (2)

A PDA that accepts by final state can be
converted to an equivalent PDA that accepts by
empty stack and vice versa.

Both types of PDAs thus describe the same class
of languages, the Context-Free Languages
(CFLs).
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PDAs and CFGs

Theorem: For a language L ⊆ Σ∗,

L = L(G) for a CFG G iff L = L(P ) for a PDA P .

I.e., the CFGs and the PDAs describe the same
class of languages.

Proof: By constructing a PDA P from a CFG G
and vice versa such that L(P ) = L(G).

We will look at constructing a PDA from a CFG.

G52MALMachines and Their LanguagesLecture 14 – p.10/14



Translating a CFG into a PDA

Given CFG G = (N,T, P, S),

P (G) = ({q0},Σ = T,Γ = N ∪ T, δ, q0, Z0 = S)

where

δ(q0, ǫ, A) = {(q0, α) | A → α ∈ P}

δ(q0, a, a) = {(q0, ǫ)} for all a ∈ T

δ(q0, w, γ) = ∅ everywhere else

Acceptance by empty stack.
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Translating a CFG into a PDA

Given CFG G = (N,T, P, S),

P (G) = ({q0},Σ = T,Γ = N ∪ T, δ, q0, Z0 = S)

where

δ(q0, ǫ, A) = {(q0, α) | A → α ∈ P}

δ(q0, a, a) = {(q0, ǫ)} for all a ∈ T

δ(q0, w, γ) = ∅ everywhere else

Acceptance by empty stack.

Note: Highly non-deterministic!
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Example: Translating a CFG into a PDA

Consider the grammar G2:

A → 0A0 | 1A1 | ǫ
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Example: Translating a CFG into a PDA

Consider the grammar G2:

A → 0A0 | 1A1 | ǫ

Contruct PDA P2 = P (G2). On white board.

G52MALMachines and Their LanguagesLecture 14 – p.12/14



Deterministic PDAs (DPDAs) (1)

A DPDA is a PDA that has no choice:

A PDA P = (Q,Σ,Γ, δ, q0, Z0, F ) is deterministic
iff
|δ(q, x, z)| + |δ(q, ǫ, z| ≤ 1 for all q ∈ Q, x ∈ Σ, z ∈ Γ.
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Deterministic PDAs (DPDAs) (1)

A DPDA is a PDA that has no choice:

A PDA P = (Q,Σ,Γ, δ, q0, Z0, F ) is deterministic
iff
|δ(q, x, z)| + |δ(q, ǫ, z| ≤ 1 for all q ∈ Q, x ∈ Σ, z ∈ Γ.

Example: P2 is not a DPDA.
E.g. |δ(q0, 0, A)| + |δ(q0, ǫ, A)| = 0 + 3 6≤ 1
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Deterministic PDAs (DPDAs) (2)

DPDAs important because can be implemented
efficiently. (See lectures on predictive recursive
descent parsing.)
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Deterministic PDAs (DPDAs) (2)

DPDAs important because can be implemented
efficiently. (See lectures on predictive recursive
descent parsing.)

But unfortunately:

Theorem: The set of languages accepted by the
DPDAs is a strict subset of the languages
accepted by PDAs: L(DPDA) ⊂ L(PDA) = CFL.
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Deterministic PDAs (DPDAs) (2)

DPDAs important because can be implemented
efficiently. (See lectures on predictive recursive
descent parsing.)

But unfortunately:

Theorem: The set of languages accepted by the
DPDAs is a strict subset of the languages
accepted by PDAs: L(DPDA) ⊂ L(PDA) = CFL.

However, most context-free langauges of
practical importance can be described by
DPDAs.
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