Recursive-Descent Parsing: Introduction

Henrik Nilsson
University of Nottingham, UK

This Lecture

- What is Parsing?
- Recursive-Descent Parsing Fundamentals
- Handling Choice

What is Parsing? (1)

- According to Merriam-Webster OnLine (www.webster.com), parse means:
 to resolve (as a sentence) into component parts of speech and describe them grammatically
- In CS, we take this to mean answering
 \[w \in L(G)? \]
 for a CFG \(G \) by analysing the structure of \(w \) according to \(G \); i.e. to recognize the language generated by a grammar \(G \).

What is Parsing? (2)

- A parser is a program that carries out parsing; i.e., essentially (for CFGs) a realization of a PDA.
- For most practical applications, a parser will also return a structured representation of a word \(w \in L(G) \): its derivation or parse tree (although usually a simplified version, an Abstract Syntax Tree).
Parsing Strategies

There are two basic strategies for parsing: top-down and bottom up.

- A top-down parser attempts to carry out a derivation matching the input starting from the start symbol; i.e., it constructs the parse tree for the input from the root downwards in preorder.
- A bottom-up parser tries to construct the parse tree from the leaves upwards by using the productions “backwards.”

Recursive-Descent Parsing (1)

Recursive-descent parsing is a way to implement top-down parsing. We are just going to focus on the language recognition problem:

\[w \in L(G) ? \]

This suggests the following type for the parser:

```haskell
gpare : : [Token] -> Bool
```

Token is “compiler speak” for (input) symbol.

Recursive-Descent Parsing (2)

Consider a typical production in some grammar \(G \):

\[S \rightarrow AB \]

Let \(L(X) \) be the language \(\{ w \in T^* | X \Rightarrow_G w \} \).

Note that

\[w \in L(S) \iff \exists w_1, w_2 . w = w_1 w_2 \]
\[\land w_1 \in L(A) \]
\[\land w_2 \in L(B) \]

I.e., given a parser for \(L(A) \) and a parser for \(L(B) \), we can construct a parser for \(L(S) \).

Recursive-Descent Parsing (3)

But we need a way to divide the input word \(w \)!

Idea!
Each parser
- tries to derive a prefix of the input according to the productions for the nonterminal
- returns the remaining suffix if successful.

New type:

```haskell
parseX : : [Token] -> Maybe [Token]
(Recall: data Maybe a = Nothing | Just a)
```
Recursive-Descent Parsing (4)

Now we can construct a parser for $L(S)$

$S \to AB$

in terms of parsers for $L(A)$ and $L(B)$:

- $parseS :: [Token] \to \text{Maybe} \ [Token]$

 $parseS \ ts =$

 case $parseA \ ts$ of
 Nothing \to Nothing
 Just $ts' \to$
 case $parseB \ ts'$ of
 Nothing \to Nothing
 Just $ts'' \to Just \ ts''$

Recursive-Descent Parsing (5)

Or we can simplify to just

- $parseS :: [Token] \to \text{Maybe} \ [Token]$
 $parseS \ ts =$

 case $parseA \ ts$ of
 Nothing \to Nothing
 Just $ts' \to parseB \ ts'$

This is called recursive-descent parsing because the parse functions (usually) end up being (mutually) recursive.

Exercise

Suppose type Token = Char and

- $parseA :: [Token] \to \text{Maybe} \ [Token]$

 $parseA \ (\text{'a' : ts}) = Just \ ts$

 $parseA \ _ = \text{Nothing}$

- $parseB :: [Token] \to \text{Maybe} \ [Token]$

 $parseB \ (\text{'b' : ts}) = Just \ ts$

 $parseB \ _ = \text{Nothing}$

- Evaluate $parseA, parseB$, and $parseS$ on “abcd”.

- What are the productions for A and B?

Recursive-Descent Parsers and PDAs

- Fundamental to the implementation of a recursive computation is a stack that
 - keeps track of the state of the computation
 - allows for subcomputations (to any depth).

- In a language that supports recursive functions and procedures, the stack isn’t explicitly visible. But internally, it is the central datastructure.

- Thus, a recursive-descent parser is a kind of PDA.
We also need a way to handle choice, as in

\[S \rightarrow AB \mid CD \]

We are first going to consider the case when the choice is obvious, as in

\[S \rightarrow aAB \mid cCD \]

I.e. we assume it is manifest from the grammar that we can choose between productions with a one-symbol lookahead.

A Simple Recursive-Descent Parser (1)

Consider:

\[
\begin{align*}
S & \rightarrow aA \mid bBA \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow bB \mid \epsilon
\end{align*}
\]

We are going to need one parsing function for each non-terminal:

- `parseS :: [Token] -> Maybe [Token]`
- `parseA :: [Token] -> Maybe [Token]`
- `parseB :: [Token] -> Maybe [Token]`

A Simple Recursive-Descent Parser (2)

Production: \(S \rightarrow aA \mid bBA \)

```haskell
type Token = Char

parseS :: [Token] -> Maybe [Token]
parseS ('a' : ts) = parseA ts
parseS ('b' : ts) = case parseB ts of
    Nothing -> Nothing
    Just ts' -> parseA ts'
parseS _ = Nothing
```

A Simple Recursive-Descent Parser (3)

Production: \(A \rightarrow aA \mid \epsilon \)

```haskell
parseA :: [Token] -> Maybe [Token]
parseA ('a' : ts) = parseA ts
parseA ts = Just ts
```

Production: \(B \rightarrow bB \mid \epsilon \)

```haskell
parseB :: [Token] -> Maybe [Token]
parseB ('b' : ts) = parseB ts
parseB ts = Just ts
```

Note: Since \(A \Rightarrow \epsilon \) and \(B \Rightarrow \epsilon \), it is not a syntax error if the next token is not, respectively, \(a \) and \(b \).
Choice (1)

Now consider:

\[
\begin{align*}
S & \rightarrow aA \mid aBA \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow bB \mid \epsilon
\end{align*}
\]

In parseS, should parseA or parseB be called once \(a\) has been read?

Choice (2)

We could try the alternatives in order; i.e., a limited form of backtracking:

Production: \(S \rightarrow aA \mid aBA\)

\[
\text{parseS ('a' : ts) =}
\]

\[
\begin{align*}
&\text{case parseA ts of} \\
&\quad \text{Just ts' -> Just ts'} \\
&\quad \text{Nothing ->} \\
&\quad\quad \text{case parseB ts of} \\
&\quad\quad\text{Nothing -> Nothing} \\
&\quad\quad\text{Just ts' -> parseA ts'}
\end{align*}
\]

Choice (3)

Similarly, to handle \(\epsilon\)-productions (as we already did):

Production: \(A \rightarrow aA \mid \epsilon\)

\[
\begin{align*}
\text{parseA :: [Token] -> Maybe [Token]} \\
\text{parseA ('a' : ts) = parseA ts} \\
\text{parseA ts} &= \text{Just ts}
\end{align*}
\]

If the present input starts with an \(a\), consume it and continue. Only if this fails will the always successful \(\epsilon\)-rule be used! The opposite order would not be very useful.

Choice (4)

Limited backtracking is not an exhaustive search: liable to get stuck in “blind alleys”.

Consider:

\[
\begin{align*}
S & \rightarrow AB \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow ab
\end{align*}
\]
Parsing functions:

\[
\begin{align*}
\text{parseA} ('a' : ts) & = \text{parseA} ts \\
\text{parseA} ts & = \text{Just} ts \\
\text{parseB} ('a' : 'b' : ts) & = \text{Just} ts \\
\text{parseB} ts & = \text{Nothing}
\end{align*}
\]

\[
\text{parseS} ts = \\
\quad \text{case parseA ts of} \\
\quad \quad \text{Nothing} \to \text{Nothing} \\
\quad \quad \text{Just ts'} \to \text{parseB ts'}
\]

Will it work? Consider parsing \textit{ab}. Clearly derivable from the grammar!

But:

\[
\text{parseS "ab" = Nothing}
\]

Why? Because

\[
\text{parseA "ab" = Just "b"}
\]

I.e., committed to the choice \(A \to a \), and will never try \(A \to \epsilon \): a “blind alley”.

Changing order may solve this, but will cause other problems.

One principled approach is to try \textit{all} alternatives; i.e., full backtracking (aka list of successes):

- Each parsing function returns a list of all possible suffixes. Type:
 \[
 \text{parseX :: [Token] \to [[Token]]}
 \]
- Translate \(A \to \alpha | \beta \) into
 \[
 \text{parseA ts} = \text{parseAlpha ts} ++ \text{parseBeta ts}
 \]
- An empty list indicates no possible parsing.

However:

- backtracking is computationally expensive
- issues with error reporting: where exactly lies the problem if it only \textit{after} an exhaustive search becomes apparent that there is no possible way to parse a word?

We are going to look at another principled approach that avoids backtracking: \textit{predictive parsing}. (But the grammar must satisfy certain conditions.)