« What is Parsing?
« Recursive-Descent Parsing Fundamentals
« Handling Choice

Henrik Nilsson

University of Nottingham, UK

_ Sratectnes s tanauagestecte 19 p vz _ crauptiectnes smoTnar anagsstectre 19 pane

What is Parsing? (1) What is Parsing? (2)

 According to Merriam-Webster OnLine

(www.webster.com) means: <A is a program that carries out
' ' ’ ' arsing; i.e., essentially (for CFGs) a
to resolve (as a sentence) into component Eealizagt’ion of a PDA. Y)

parts of speech and describe them

grammatically » For most practical applications, a parser will

_ _ also return a structured representation of a
 In CS, we take this to mean answering word w € L(G): its or

w € L(G)? (although usually a simplified version, an
).
for a CFG G by analysing the structure of w
according to G i.e. to the
language generated by a grammar G.

_ Sraptisenes e Thar anauagsstestre 15 p s _ crauptisennes s nar angsossectre 18 pase

Parsing Strategies

There are two basic strategies for parsing:
and

A top-down parser attempts to carry out a
derivation matching the input starting from the
start symbol; i.e., it constructs the parse tree
for the input in
preorder.

« A bottom-up parser tries to construct the
parse tree by
using the productions “backwards”.

Recursive-Descent Parsing (2)

Consider a typical production in some grammar G
S — AB

Let L(X) be the language {w € T* | X % w}.
Note that

G52MALMachines and Their LanguagesLecture 15 — p.5/24

w € L(S) < Jwy,ws . w = wiwy
N wp € L(A)
N wy € L(B)

l.e., given a parser for L.(A) and a parser for L(B),
we can construct a parser for L(.5).

G52MALMachines and Their LanguagesLecture 15 — p.7/24

Recursive-Descent Parsing (1)

is a way to
implement top-down parsing.

We are just going to focus on the language
recognition problem:

w € L(G)?
This suggests the following type for the parser:

parser :: [Token] —-> Bool

is “compiler speak” for (input) symbol.

G52MALMachines and Their LanguagesLecture 15 — p.6/24

Recursive-Descent Parsing (3)

But we need a way to divide the input word w!

Each parser

- tries to derive a of the input according
to the productions for the nonterminal

* returns the remaining if successful.
New type:

parseX :: [Token] —-> Maybe [Token]
(Recall: data Maybe a = Nothing | Just a)

G52MALMachines and Their LanguagesLecture 15 — p.8/24

Recursive-Descent Parsing (4)

Now we can construct a parser for L(.5)
S — AB

in terms of parsers for L(A) and L(B):

parseS :: [Token] —-> Maybe [Token]
parseS ts =
case parseA ts of
Nothing -> Nothing
Just ts’ ->
case parseB ts’ of
Nothing —> Nothing
Just ts’’ -> Just ts’’

G52MALMachines and Their LanguagesLecture 15 — p.9/24

Exercise

Suppose type Token = Char and

parseA :: [Token] —-> Maybe [Token]
parseA ('a’ : ts) = Just ts
parseA _ = Nothing
parseB :: [Token] —-> Maybe [Token]
parseB (b’ : ts) = Just ts
parseB _ = Nothing

- Evaluate parseh, parseB, and parseS on
“abcd”.

mhig

Recursive-Descent Parsing (5)

Or we can simplify to just

parseS :: [Token] —-> Maybe [Token]
parseS ts =
case parseA ts of
Nothing -> Nothing

Just ts’ —-> parseB ts’

This is called recursive-descent parsing because
the parse functions (usually) end up being
(mutually) recursive.

G52MALMachines and Their LanguagesLecture 15 — p.10/24

Recursive-Descent Parsers and PDAs

« Fundamental to the implementation of a

recursive computation is a that
- keeps track of the of the computation
- allows for (to any
depth).

* In a language that supports recursive functions
and procedures, the stack isn’t explicitly visible.
But internally, it is the central datastructure.

« Thus, a recursive-descent parser is a kind of
PDA.

G52MALMachines and Their LanguagesLecture 15 — p.12/24

Recursive-Descent Parsing (6) A Simple Recursive-Descent Parser (1)

We also need a way to handle , asin Consider:
S — AB|CD S — aA|bBA
A — dA|e
We are first going to consider the case when the B — bB|e

choice is obvious, as in
We are going to need one parsing function for

S — aAB | cCD each non-terminal:
l.e. we assume it is manifest from the grammar * parseS :: [Token] —-> Maybe [Token]
that we can choose between productions with a - parseA :: [Token] —> Maybe [Token]
one-symbol
* parseB :: [Token] —-> Maybe [Token]

_ craatectnes s Ther anauagsstectre 19 7p e _ craptiscnnes smoThar anuagsstectre 15 p e

A Simple Recursive-Descent Parser (2) A Simple Recursive-Descent Parser (3)

Production: S — aA | bBA
type Token = Char

Production: A — aA | e

parseA :: [Token] —-> Maybe [Token]
arseA ('a’ : ts) = parseA ts
parseS :: [Token] -> Maybe [Token] P P
parses ("a’ : ts) - parseA ts = Just ts
parseA ts Production: B — bB | ¢
parseS ('b" : ts) = parseB :: [Token] —-> Maybe [Token]
case parseB ts of parseB (‘b’ : ts) = parseB ts
Nothlng Pl Nothlng parseB ts = Just ts

Just ts’ -> A ts’ ' iti
ust ts parsea ts Note: Since A = eand B = ¢, itis a syntax

error if the next token is not, respectively, a and b.

_ crauptisetnes s Ther anauagsstecure 1o mprse _ craptiscnnes soThar angmossectre 15 prese

parseS _ = Nothing

Choice (1)

Now consider:

au4 | aJS)A
aA|e

—= 0D | €

W = »n
1\

In par'ses, should parseA or parseB be called
once a has been read?

G52MALMachines and Their LanguagesLecture 15 —p.17/24

Choice (3)

Similarly, to handle e-productions (as we already did):

Production: A — aA | ¢

parseA :: [Token] —-> Maybe [Token]
parseA ('a’ : ts) = parseA ts
parseA ts = Just ts

If the present input starts with an a, consume it
and continue. Only if this fails will the always
successful e-rule be used! The opposite order
would not be very useful.

G52MALMachines and Their LanguagesLecture 15 — p.19/24

Choice (2)

We could try the alternatives in order;i.e., a
limited form of :

Production: S — aA | aBA

parseS ("a’ : ts) =
case parseA ts of
Just ts’ -> Just ts’
Nothing —>
case parseB ts of
Nothing -> Nothing

Just ts’ -> parseA ts’

_ craptiscnnes soThar anuagsstectre 15 ~p e

Choice (4)

Limited backtracking is an exhaustive
search: liable to get stuck in “blind alleys”.

Consider:

S — AB
A — aAle
B — ab

_ crauptiscnnes soThar angsstectre 15 pne

Choice (5)

Parsing functions:

parseA ('a’ : ts) = parseA ts
parseA ts = Just ts
parseB ('a’ : ’'b’ : ts) = Just ts

parseB ts Nothing
parseS ts =
case parseA ts of
Nothing -> Nothing
Just ts’ —> parseB ts’

G52MALMachines and Their LanguagesLecture 15 —p.21/24

Choice (7)

One principled approach is to try a// alternatives;
e, (aka):

« Each parsing function returns a of
possible suffixes. Type:

parseX :: [Token] —-> [[Token]]
- Translate A — a/ | finto

parseA ts = parseAlpha ts ++ parseBeta ts

« An empity list indicates no possible parsing.

G52MALMachines and Their LanguagesLecture 15 — p.23/24

Choice (6)

Will it work? Consider parsing ab. Clearly
derivable from the grammar!

But:

parseS "ab" = Nothing

Why? Because
parseA "ab" = Just "b"

l.e., committed to the choice A — a, and will
never try A — e:

Changing order may solve this, but will cause

G52MALMachines and Their LanguagesLecture 15 — p.22/24

Choice (8)

However:
« backtracking is computationally expensive

« issues with error reporting: where exactly lies
the problem if it only an exhaustive
search becomes apparent that there is no
possible way to parse a word?

We are going to look at another principled
approach that avoids backtracking:

. (But the grammar must satisfy certain
conditions.)

G52MALMachines and Their LanguagesLecture 15 — p.24/24

	This Lecture
	What is Parsing? (1)
	What is Parsing? (2)
	Parsing Strategies
	Recursive-Descent Parsing (1)
	Recursive-Descent Parsing (2)
	Recursive-Descent Parsing (3)
	Recursive-Descent Parsing (4)
	Recursive-Descent Parsing (5)
	Exercise
	Recursive-Descent Parsers and PDAs
	Recursive-Descent Parsing (6)
	A Simple Recursive-Descent Parser (1)
	A Simple Recursive-Descent Parser (2)
	A Simple Recursive-Descent Parser (3)
	Choice (1)
	Choice (2)
	Choice (3)
	Choice (4)
	Choice (5)
	Choice (6)
	Choice (7)
	Choice (8)

