This Lecture

- What is Parsing?
- Recursive-Descent Parsing Fundamentals
- Handling Choice

What is Parsing? (1)

- According to Merriam-Webster OnLine (www.webster.com), parse means:
 to resolve (as a sentence) into component parts of speech and describe them grammatically
- In CS, we take this to mean answering
 \(w \in L(G) \)
 for a CFG \(G \) by analysing the structure of \(w \) according to \(G \); i.e. to recognize the language generated by a grammar \(G \).

What is Parsing? (2)

- A parser is a program that carries out parsing; i.e., essentially (for CFGs) a realization of a PDA.
- For most practical applications, a parser will also return a structured representation of a word \(w \in L(G) \): its derivation or parse tree (although usually a simplified version, an Abstract Syntax Tree).

Parsing Strategies

There are two basic strategies for parsing:
- **top-down** and **bottom up**.
- A top-down parser attempts to carry out a derivation matching the input starting from the start symbol; i.e., it constructs the parse tree for the input from the root downwards in preorder.
- A bottom-up parser tries to construct the parse tree from the leaves upwards by using the productions “backwards”.

Recursive-Descent Parsing (1)

Recursive-descent parsing is a way to implement top-down parsing.
We are just going to focus on the language recognition problem:
\(w \in L(G) \).
This suggests the following type for the parser:
\[
\text{parser} :: \text{[Token]} \rightarrow \text{Bool}
\]
\(\text{Token} \) is “compiler speak” for (input) symbol.

Recursive-Descent Parsing (2)

Consider a typical production in some grammar \(G \):
\[
S \rightarrow AB
\]
Let \(L(X) \) be the language \(\{ w \in T^* | X \xrightarrow{G} w \} \).
Note that
\[
w \in L(S) \iff \exists w_1, w_2 . w = w_1 w_2 \\
\land w_1 \in L(A) \\
\land w_2 \in L(B)
\]
I.e., given a parser for \(L(A) \) and a parser for \(L(B) \), we can construct a parser for \(L(S) \).

Recursive-Descent Parsing (3)

But we need a way to divide the input word \(w \)!
\text{Idea!}
Each parser
- tries to derive a prefix of the input according to the productions for the nonterminal
- returns the remaining suffix if successful.

New type:
\[
\text{parseX} :: \text{[Token]} \rightarrow \text{Maybe} \text{[Token]}
\]
(Recall: data Maybe a = Nothing | Just a)

Recursive-Descent Parsing (4)

Now we can construct a parser for \(L(S) \)
\[
S \rightarrow AB
\]
in terms of parsers for \(L(A) \) and \(L(B) \):
\[
\text{parseS} :: \text{[Token]} \rightarrow \text{Maybe} \text{[Token]}
\]
\[
\text{parseS} \text{ts} = \\
\text{case parseA ts of} \\
\text{Nothing} \rightarrow \text{Nothing} \\
\text{Just ts'} \rightarrow \\
\text{case parseB ts' of} \\
\text{Nothing} \rightarrow \text{Nothing} \\
\text{Just ts''} \rightarrow \text{Just ts''}
\]
Recursive-Descent Parsing (5)

Or we can simplify to just

```haskell
parseS :: [Token] -> Maybe [Token]
parseS ts =
  case parseA ts of
    Nothing -> Nothing
    Just ts' -> parseB ts'
```

This is called recursive-descent parsing because the parse functions (usually) end up being (mutually) recursive.

Recursive-Descent Parsing (6)

We also need a way to handle choice, as in

```
S \rightarrow AB | CD
```

We are first going to consider the case when the choice is obvious, as in

```
S \rightarrow aAB | cCD
```

I.e. we assume it is manifest from the grammar that we can choose between productions with a one-symbol lookahead.

A Simple Recursive-Descent Parser (1)

Consider:

```
S \rightarrow aA | aBA
A \rightarrow aA | \epsilon
B \rightarrow bB | \epsilon
```

We are going to need one parsing function for each non-terminal:

- \(parseS\) : [Token] -> Maybe [Token]
- \(parseA\) : [Token] -> Maybe [Token]
- \(parseB\) : [Token] -> Maybe [Token]

A Simple Recursive-Descent Parser (3)

Production: \(A \rightarrow aA | \epsilon\)

```haskell
parseA :: [Token] -> Maybe [Token]
parseA ('a' : ts) = parseA ts
parseA ts = Just ts
```

Production: \(B \rightarrow bB | \epsilon\)

```haskell
parseB :: [Token] -> Maybe [Token]
parseB ('b' : ts) = parseB ts
parseB ts = Just ts
```

Note: Since \(A \Rightarrow \epsilon\) and \(B \Rightarrow \epsilon\), it is not a syntax error if the next token is not, respectively, \(a\) and \(b\).

Exercise

Suppose \(\text{type } Token = \text{Char}\) and

```haskell
parseA :: [Token] -> Maybe [Token]
parseA ('a' : ts) = Just ts
parseA _ = Nothing
```

```haskell
parseB :: [Token] -> Maybe [Token]
parseB ('b' : ts) = Just ts
parseB _ = Nothing
```

Evaluate \(parseA\), \(parseB\), and \(parseS\) on “abcd”.

- What are the productions for \(A\) and \(B\)?

Choice (1)

Now consider:

```
S \rightarrow aA [aBA
A \rightarrow aA | \epsilon
B \rightarrow bB | \epsilon
```

In \(parseS\), should \(parseA\) or \(parseB\) be called once \(a\) has been read?

Choice (2)

We could try the alternatives in order; i.e., a limited form of backtracking:

Production: \(S \rightarrow aA | aBA\)

```haskell
parseS :: [Token] -> Maybe [Token]
parseS ('a' : ts) =
  case parseA ts of
    Nothing -> Nothing
    Just ts' -> parseA ts'
parseS _ = Nothing
```

Recursive-Descent Parsers and PDAs

- Fundamental to the implementation of a recursive computation is a stack that
 - keeps track of the state of the computation
 - allows for subcomputations (to any depth).

- In a language that supports recursive functions and procedures, the stack isn’t explicitly visible. But internally, it is the central datastructure.

- Thus, a recursive-descent parser is a kind of PDA.
Similarly, to handle ϵ-productions (as we already did):

Production: $A \rightarrow aA \mid \epsilon$

```haskell
parseA :: [Token] -> Maybe [Token]
parseA ('a' : ts) = parseA ts
parseA ts = Just ts
```

If the present input starts with an a, consume it and continue. Only if this fails will the always successful ϵ-rule be used! The opposite order would not be very useful.

Limited backtracking is *not* an exhaustive search: liable to get stuck in “blind alleys”. Consider:

$$
S \rightarrow AB \\
A \rightarrow aA \mid \epsilon \\
B \rightarrow ab
$$

```haskell
parseS ts = case parseA ts of
  Just ts' -> parseB ts'
  Nothing -> Nothing
```

Will it work? Consider parsing ab. Clearly derivable from the grammar!

But:

```haskell
parseS "ab" = Nothing
```

Why? Because

```haskell
parseA "ab" = Just "b"
```

I.e., committed to the choice $A \rightarrow a$, and will never try $A \rightarrow \epsilon$: a “blind alley”.

Changing order may solve this, but will cause other problems.

One principled approach is to try all alternatives; i.e., full backtracking (aka list of successes):

- Each parsing function returns a list of all possible suffixes. Type:
  ```haskell
  parseX :: [Token] -> [[Token]]
  ```
- Translate $A \rightarrow \alpha \mid \beta$ into
  ```haskell
  parseA ts = parseAlpha ts ++ parseBeta ts
  ```
- An empty list indicates no possible parsing.

However:

- backtracking is computationally expensive
- issues with error reporting: where exactly lies the problem if it only *after* an exhaustive search becomes apparent that there is no possible way to parse a word?

We are going to look at another principled approach that avoids backtracking: *predictive parsing*. (But the grammar must satisfy certain conditions.)