G52MAL
Machines and Their Languages
Lecture 15
Recursive-Descent Parsing: Introduction

Henrik Nilsson

University of Nottingham, UK
This Lecture

- What is Parsing?
- Recursive-Descent Parsing Fundamentals
- Handling Choice
What is Parsing? (1)
What is Parsing? (1)

- According to Merriam-Webster OnLine (www.webster.com), **parse** means:
 to resolve (as a sentence) into component parts of speech and describe them grammatically
What is Parsing? (1)

- According to Merriam-Webster OnLine (www.webster.com), **parse** means:
 to resolve (as a sentence) into component parts of speech and describe them grammatically
- In CS, we take this to mean answering

\[w \in L(G) \]?

for a CFG \(G \) by analysing the structure of \(w \) according to \(G \); i.e. to **recognize** the language generated by a grammar \(G \).
What is Parsing? (2)

- A **parser** is a program that carries out parsing; i.e., essentially (for CFGs) a realization of a PDA.
What is Parsing? (2)

- A **parser** is a program that carries out parsing; i.e., essentially (for CFGs) a realization of a PDA.

- For most practical applications, a parser will also return a structured representation of a word $w \in L(G)$: its **derivation** or **parse tree** (although usually a simplified version, an **Abstract Syntax Tree**).
There are two basic strategies for parsing: *top-down* and *bottom up*.
There are two basic strategies for parsing: *top-down* and *bottom up*.

- A top-down parser attempts to carry out a derivation matching the input starting from the start symbol; i.e., it constructs the parse tree for the input *from the root downwards* in preorder.
There are two basic strategies for parsing: *top-down* and *bottom up*.

- A top-down parser attempts to carry out a derivation matching the input starting from the start symbol; i.e., it constructs the parse tree for the input *from the root downwards* in preorder.

- A bottom-up parser tries to construct the parse tree *from the leaves upwards* by using the productions “backwards”.
Recursive-descent parsing is a way to implement top-down parsing.

We are just going to focus on the language recognition problem:

\[w \in L(G)? \]
Recursive-descent parsing is a way to implement top-down parsing.

We are just going to focus on the language recognition problem:

$$w \in L(G)?$$

This suggests the following type for the parser:

```haskell
parser :: [Token] -> Bool
```

Token is “compiler speak” for (input) symbol.
Consider a typical production in some grammar G:

$$S \rightarrow AB$$

Let $L(X)$ be the language $\{w \in T^* \mid X \xrightarrow{G} w\}$.

Note that

$$w \in L(S) \iff \exists w_1, w_2 \cdot w = w_1w_2$$

$$\land w_1 \in L(A)$$

$$\land w_2 \in L(B)$$
Consider a typical production in some grammar G:

$$ S \rightarrow AB $$

Let $L(X)$ be the language $\{ w \in T^* \mid X \xrightarrow{G} w \}$. Note that

$$ w \in L(S) \iff \exists w_1, w_2 . \quad w = w_1w_2 $$

$$ \land w_1 \in L(A) $$

$$ \land w_2 \in L(B) $$

I.e., given a parser for $L(A)$ and a parser for $L(B)$, we can construct a parser for $L(S)$.
But we need a way to divide the input word w!
Recursive-Descent Parsing (3)

But we need a way to divide the input word w!

Idea!

Each parser

- tries to derive a **prefix** of the input according to the productions for the nonterminal
- returns the remaining **suffix** if successful.
Recursive-Descent Parsing (3)

But we need a way to divide the input word w!

Idea!

Each parser

- tries to derive a *prefix* of the input according to the productions for the nonterminal
- returns the remaining *suffix* if successful.

New type:

```haskell
parseX :: [Token] -> Maybe [Token]
```

(Recall: data Maybe a = Nothing | Just a)
Now we can construct a parser for $L(S')$

\[S \rightarrow AB \]

in terms of parsers for $L(A)$ and $L(B)$:

```haskell
parseS :: [Token] -> Maybe [Token]
parseS ts =
    case parseA ts of
        Nothing    -> Nothing
        Just ts'   ->
            case parseB ts' of
                Nothing    -> Nothing
                Just ts''  -> Just ts''
```

Recursive-Descent Parsing (4)
Or we can simplify to just

```haskell
parseS :: [Token] -> Maybe [Token]
parseS ts =
    case parseA ts of
        Nothing -> Nothing
        Just ts' -> parseB ts'
```

This is called recursive-descent parsing because the parse functions (usually) end up being (mutually) recursive.
Exercise

Suppose \(\text{type } \text{Token} = \text{Char} \) and

\[
\begin{align*}
\text{parseA} & :: \text{[Token]} \rightarrow \text{Maybe [Token]} \\
\text{parseA} \ ('a' : ts) & = \text{Just ts} \\
\text{parseA} \ _ & = \text{Nothing} \\
\text{parseB} & :: \text{[Token]} \rightarrow \text{Maybe [Token]} \\
\text{parseB} \ ('b' : ts) & = \text{Just ts} \\
\text{parseB} \ _ & = \text{Nothing}
\end{align*}
\]

- **Evaluate** \(\text{parseA, parseB, and parseS} \) on “abcd”.

- **What are the productions for \(A \) and \(B \)?**
Recursive-Descent Parsers and PDAs

• Fundamental to the implementation of a recursive computation is a stack that
 - keeps track of the state of the computation
 - allows for subcomputations (to any depth).
Recursive-Descent Parsers and PDAs

- Fundamental to the implementation of a recursive computation is a stack that
 - keeps track of the state of the computation
 - allows for subcomputations (to any depth).

- In a language that supports recursive functions and procedures, the stack isn’t explicitly visible. But internally, it is the central datastructure.
Recursive-Descent Parsers and PDAs

- Fundamental to the implementation of a recursive computation is a stack that
 - keeps track of the state of the computation
 - allows for subcomputations (to any depth).

- In a language that supports recursive functions and procedures, the stack isn’t explicitly visible. But internally, it is the central datastructure.

- Thus, a recursive-descent parser is a kind of PDA.
Recursive-Descent Parsing (6)

We also need a way to handle *choice*, as in

\[S \rightarrow AB \mid CD \]
Recursive-Descent Parsing (6)

We also need a way to handle \textit{choice}, as in

\[S \rightarrow AB \mid CD \]

We are first going to consider the case when the choice is obvious, as in

\[S' \rightarrow aAB \mid cCD \]

I.e. we assume it is manifest from the grammar that we can choose between productions with a one-symbol \textit{lookahead}.
Consider:

\[
\begin{align*}
S & \rightarrow aA \mid bBA \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow bB \mid \epsilon
\end{align*}
\]
Consider:

\[
S \rightarrow aA | bBA \\
A \rightarrow aA | \epsilon \\
B \rightarrow bB | \epsilon
\]

We are going to need one parsing function for each non-terminal:

- \(\text{parseS} :: [\text{Token}] \rightarrow \text{Maybe} [\text{Token}]\)
- \(\text{parseA} :: [\text{Token}] \rightarrow \text{Maybe} [\text{Token}]\)
- \(\text{parseB} :: [\text{Token}] \rightarrow \text{Maybe} [\text{Token}]\)
A Simple Recursive-Descent Parser (2)

Production: $S \rightarrow aA \mid bBA$

```haskell
type Token = Char

parseS :: [Token] -> Maybe [Token]
parseS ('a' : ts) = parseA ts
parseS ('b' : ts) = case parseB ts of
    Nothing -> Nothing
    Just ts' -> parseA ts'
parseS _ = Nothing
```
A Simple Recursive-Descent Parser (3)

Production: \(A \rightarrow aA \mid \epsilon \)

\[
\begin{align*}
\text{parseA} :: \text{[Token]} & \rightarrow \text{Maybe [Token]} \\
\text{parseA} ('a' : ts) & = \text{parseA ts} \\
\text{parseA ts} & = \text{Just ts}
\end{align*}
\]

Production: \(B \rightarrow bB \mid \epsilon \)

\[
\begin{align*}
\text{parseB} :: \text{[Token]} & \rightarrow \text{Maybe [Token]} \\
\text{parseB} ('b' : ts) & = \text{parseB ts} \\
\text{parseB ts} & = \text{Just ts}
\end{align*}
\]

Note: Since \(A \Rightarrow \epsilon \) and \(B \Rightarrow \epsilon \), it is not a syntax error if the next token is not, respectively, \(a \) and \(b \).
Now consider:

\[
S \rightarrow aA \mid aBA \\
A \rightarrow aA \mid \epsilon \\
B \rightarrow bB \mid \epsilon
\]
Choice (1)

Now consider:

\[
S \rightarrow aA \mid aBA \\
A \rightarrow aA \mid \epsilon \\
B \rightarrow bB \mid \epsilon
\]

In parsing, should \texttt{parseA} or \texttt{parseB} be called once \texttt{a} has been read?
Choice (2)

We could try the alternatives in order; i.e., a limited form of \textit{backtracking}:

Production: $S' \rightarrow aA \mid aBA$

$$\text{parseS ('a' : ts) =}$$
 \text{case parseA ts of}
 Just ts' -> Just ts'
 Nothing ->
 case parseB ts of
 Nothing -> Nothing
 Just ts' -> parseA ts'$$
Similarly, to handle ϵ-productions (as we already did):

Production: $A \rightarrow aA \mid \epsilon$

```
parseA :: [Token] -> Maybe [Token]
parseA ('a' : ts) = parseA ts
parseA ts = Just ts
```
Similarly, to handle ϵ-productions (as we already did):

Production: \[A \rightarrow aA \mid \epsilon \]

\[
\text{parseA} :: [\text{Token}] \rightarrow \text{Maybe} \ [\text{Token}]
\]
\[
\text{parseA ('a' : ts)} = \text{parseA ts}
\]
\[
\text{parseA ts} = \text{Just ts}
\]

If the present input starts with an a, consume it and continue. Only if this fails will the always successful ϵ-rule be used! The opposite order would not be very useful.
Limited backtracking is *not* an exhaustive search: liable to get stuck in “blind alleys”.

Consider:

\[
\begin{align*}
S & \rightarrow AB \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow ab
\end{align*}
\]
Parsing functions:

\[
\begin{align*}
\text{parseA} \left(\text{\textquotesingle}a\text{\textquotesingle} : ts \right) & = \text{parseA} \ ts \\
\text{parseA} \ ts & = \text{Just} \ ts \\
\text{parseB} \left(\text{\textquotesingle}a\text{\textquotesingle} : \text{\textquotesingle}b\text{\textquotesingle} : ts \right) & = \text{Just} \ ts \\
\text{parseB} \ ts & = \text{Nothing} \\
\text{parseS} \ ts & = \text{case parseA} \ ts \text{ of} \\
& \quad \text{Nothing} \rightarrow \text{Nothing} \\
& \quad \text{Just ts'} \rightarrow \text{parseB} \ ts'
\end{align*}
\]
Choice (6)

Will it work? Consider parsing ab. Clearly derivable from the grammar!
Will it work? Consider parsing ab. Clearly derivable from the grammar!

But:

```haskell
parseS "ab" = Nothing
```
Choice (6)

Will it work? Consider parsing ab. Clearly derivable from the grammar!

But:

```
parseS "ab" = Nothing
```

Why? Because

```
parseA "ab" = Just "b"
```

i.e., committed to the choice $A \rightarrow a$, and will never try $A \rightarrow \epsilon$: a “blind alley”.
Choice (6)

Will it work? Consider parsing ab. Clearly derivable from the grammar!

But:

\[
\text{parseS } "ab" = \text{Nothing}
\]

Why? Because

\[
\text{parseA } "ab" = \text{Just } "b"
\]

I.e., committed to the choice $A \rightarrow a$, and will never try $A \rightarrow \epsilon$: a “blind alley”.

Changing order may solve this, but will cause other problems.
One principled approach is to try all alternatives; i.e., full backtracking (aka list of successes):
One principled approach is to try *all* alternatives; i.e., *full backtracking* (aka *list of successes*):

- Each parsing function returns a *list* of *all* possible suffixes. Type:

 \[
 \text{parseX} :: [\text{Token}] \rightarrow [[[\text{Token}]]]
 \]
One principled approach is to try all alternatives; i.e., **full backtracking** (aka **list of successes**):

- Each parsing function returns a list of all possible suffixes. Type:

\[
\text{parseX} :: [\text{Token}] \rightarrow [[[\text{Token}]]]
\]

- **Translate** \(A \rightarrow \alpha | \beta \) into

\[
\text{parseA} \ ts = \text{parseAlpha} \ ts ++ \text{parseBeta} \ ts
\]
One principled approach is to try *all* alternatives; i.e., *full backtracking* (aka *list of successes*):

- Each parsing function returns a *list* of *all* possible suffixes. Type:

 \[
 \text{parseX} :: \text{[Token]} \rightarrow \text{[[Token]]}
 \]

- Translate \(A \rightarrow \alpha | \beta \) into

 \[
 \text{parseA} \ ts = \text{parseAlpha} \ ts ++ \text{parseBeta} \ ts
 \]

- An empty list indicates no possible parsing.
However:

- backtracking is computationally expensive
- issues with error reporting: where exactly lies the problem if it only after an exhaustive search becomes apparent that there is no possible way to parse a word?

We are going to look at another principled approach that avoids backtracking: **predictive parsing**. (But the grammar must satisfy certain conditions.)