This lecture:

- The problem of choice revisited.
- Predictive Parsing and LL(1) grammars.
- Computation of First and Follow Sets.
- Left factoring

Recap: Recursive-Descent Parsing

Recursive-descent parsing is an example of the top-down parsing method:

- One parsing function associated with each nonterminal:
 \[
 \text{parseX} :: \text{[Token]} \rightarrow \text{Maybe \ [Token]}
 \]
- Each function tries to derive a prefix of the current input according to the productions for the nonterminal in question.
- Functions for other nonterminals are invoked recursively as needed.

Recap: Handling Choice

We also need a way to handle choice, as in

\[
S \rightarrow AB \mid CD
\]

- Looking at the next input symbol is sometimes enough:
 \[
 S \rightarrow aB \mid cD
 \]
- If not, all alternatives could be explored through backtracking:
 \[
 \text{parseX} :: \text{[Token]} \rightarrow \text{[[Token]]}
 \]
Predictive Parsing (1)

Today, we are going to look into exactly when the next input symbol, a one symbol lookahead, can be used to make all parsing decisions.

We note that this can be the case even if the RHSs start with nonterminals:

\[
S \rightarrow AB \mid CD \\
A \rightarrow a \mid b \\
C \rightarrow c \mid d
\]

Predictive Parsing (2)

- **Predictive parsing** is an example of recursive descent parsing where no backtracking is needed.
- The grammar must be such that the next input symbol uniquely determines the next production to use.

Productions: \(X \rightarrow \alpha \mid \beta \)

\[
\text{parse} \ X \ (t : ts) = \\
| t \ ?? \rightarrow \text{parse} \ \alpha \\
| t \ ?? \rightarrow \text{parse} \ \beta \\
| \text{otherwise} \rightarrow \text{Nothing}
\]

Predictive Parsing (3)

How to make the choices? Idea:

- Compute the set of terminal symbols that can start strings derived from each alternative, the first set.
- If there is a choice between two or more alternatives, insist that the first sets for those are disjoint.
- The right choice can now be made simply by determining to which alternative's first set the next input symbol belongs.

Predictive Parsing (4)

Productions: \(X \rightarrow \alpha \mid \beta \)

\[
\text{parse} \ X \ (t : ts) = \\
| t \in \text{first}(\alpha) \rightarrow \text{parse} \ \alpha \\
| t \in \text{first}(\beta) \rightarrow \text{parse} \ \beta \\
| \text{otherwise} \rightarrow \text{Nothing}
\]
Predictive Parsing (5)

Again, consider: \(X \rightarrow \alpha | \beta \)

What if e.g. \(\beta \Rightarrow \epsilon \)?

Clearly, the next input symbol could be a terminal that can follow a string derivable form \(X \)!

\[
\text{parseX} (t : ts) = \\
\begin{cases}
\text{parse } \alpha & | t \in \text{first}(\alpha) \\
\text{parse } \beta & | t \in \text{first}(\beta) \cup \text{follow}(X) \\
\text{Nothing} & \text{otherwise}
\end{cases}
\]

The branches must be mutually exclusive!

First and Follow Sets (1)

Following (roughly) “the Dragon Book” [ASU86]

For a CFG \(G = (N, T, P, S) \):

\[
\begin{align*}
\text{first}(\alpha) &= \{ a \in T \mid \alpha \Rightarrow^* a\beta \} \\
\text{follow}(A) &= \{ a \in T \mid S \Rightarrow^* \alpha Aa\beta \} \\
&\quad \cup \{ \$_G \mid \$ \Rightarrow^* \alpha A \}
\end{align*}
\]

where we assume \(\alpha, \beta \in (N \cup T)^* \), \(A \in N \), and where \$_G is a special “end of input” marker.

First and Follow Sets (2)

Consider:

\[
\begin{align*}
S &\rightarrow ABC \\
A &\rightarrow aA | \epsilon \\
B &\rightarrow b | \epsilon \\
C &\rightarrow c | d
\end{align*}
\]

\[
\begin{align*}
\text{first}(C) &= \{ c, d \} \\
\text{first}(B) &= \{ b \} \\
\text{first}(A) &= \{ a \} \\
\text{first}(S) &= \text{first}(ABC) \\
&= \{ a, b, c, d \}
\end{align*}
\]

First and Follow Sets (3)

Same grammar:

\[
\begin{align*}
S &\rightarrow ABC \\
A &\rightarrow aA | \epsilon \\
B &\rightarrow b | \epsilon \\
C &\rightarrow c | d
\end{align*}
\]

Follow sets:

\[
\begin{align*}
\text{follow}(C) &= \{ \$_G \} \\
\text{follow}(B) &= \text{first}(C) = \{ c, d \} \\
\text{follow}(A) &= \{ b, c, d \}
\end{align*}
\]
LL(1) Grammars (1)

Consider all productions for a nonterminal \(A \) in some grammar:

\[
A \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n
\]

In the parsing function for \(A \), on input symbol \(t \), we parse according to \(\alpha_i \) if \(t \in \text{first}(\alpha_i) \).

If \(\alpha_i \Rightarrow \epsilon \), we should parse according to \(\alpha_i \) also if \(t \in \text{follow}(A) \)!

 Nullable Nonterminals (1)

In order to compute the first and follow sets for a grammar \(G = (N, T, P, S) \), we first need to know all nonterminals \(A \in N \) such that \(A \Rightarrow \epsilon \); i.e. the set \(N_\epsilon \subseteq N \) of nullable nonterminals.

Let \(\text{syms}(\alpha) \) denote the set of symbols in a string \(\alpha \):

\[
\begin{align*}
\text{syms} & \in (N \cup T)^* \rightarrow \mathcal{P}(N \cup T) \\
\text{syms}(\epsilon) & = \emptyset \\
\text{syms}(X\alpha) & = \{X\} \cup \text{syms}(\alpha)
\end{align*}
\]

LL(1) Grammars (2)

Thus, if:

- \(\text{first}(\alpha_i) \cap \text{first}(\alpha_j) = \emptyset \) for \(1 \leq i < j \leq n \), and
- if \(\alpha_i \Rightarrow \epsilon \) for some \(i \), then, for all \(1 \leq j \leq n, j \neq i \),
 - \(\alpha_j \not\Rightarrow \epsilon \), and
 - \(\text{follow}(A) \cap \text{first}(\alpha_j) = \emptyset \)

then it is always clear what to do!

A grammar satisfying these conditions is said to be an \(LL(1) \) grammar.

Nullable Nonterminals (2)

The set \(N_\epsilon \) is the \textit{smallest} solution to the equation

\[
N_\epsilon = \{ A \mid A \rightarrow \alpha \in P \land \forall X \in \text{syms}(\alpha) . X \in N_\epsilon \}
\]

(Note that \(A \in N_\epsilon \) if \(A \rightarrow \epsilon \in P \) because \(\text{syms}(\epsilon) = \emptyset \) and \(\forall X \in \emptyset . \ldots \) is trivially true.)

We can now define a predicate \(\text{nullable} \) on \textit{strings} of grammar symbols:

\[
\begin{align*}
\text{nullable} & \in (N \cup T)^* \rightarrow \text{Bool} \\
\text{nullable}(\epsilon) & = \text{true} \\
\text{nullable}(X\alpha) & = X \in N_\epsilon \land \text{nullable}(\alpha)
\end{align*}
\]
Nullable Nonterminals (3)

The equation for N_ϵ can be solved iteratively as follows:
1. Initialize N_ϵ to $\{A \mid A \rightarrow \epsilon \in P\}$.
2. If there is a production $A \rightarrow \alpha$ such that $\forall X \in \text{syms}(\alpha) . X \in N_\epsilon$, then add A to N_ϵ.
3. Repeat step 2 until no further nullable nonterminals can be found.

Nullable Nonterminals (4)

Consider the following grammar:

\[
\begin{align*}
S & \rightarrow ABC \mid AB & B & \rightarrow b \mid \epsilon \\
A & \rightarrow aA \mid BB & C & \rightarrow c \mid d
\end{align*}
\]

- Because $B \rightarrow \epsilon$ is a production, $B \in N_\epsilon$.
- Because $A \rightarrow BB$ is a production and $B \in N_\epsilon$, additionally $A \in N_\epsilon$.
- Because $S \rightarrow AB$ is a production, and $A, B \in N_\epsilon$, additionally $S \in N_\epsilon$.
- No more production with nullable RHS. The set of nullable symbols $N_\epsilon = \{S, A, B\}$.

Computing First Sets (1)

For a CFG $G = (N, T, P, S)$, the sets $\text{first}(A)$ for $A \in N$ are the smallest sets satisfying:

\[
\begin{align*}
\text{first}(A) & \subseteq T \\
\text{first}(A) & = \bigcup_{A \rightarrow \alpha \in P} \text{first}(\alpha)
\end{align*}
\]

Computing First Sets (2)

For strings, first is defined as (note the *overloaded* notation):

\[
\begin{align*}
\text{first} & \in (N \cup T)^* \rightarrow \mathcal{P}(T) \\
\text{first}(\epsilon) & = \emptyset \\
\text{first}(aa) & = \{a\} \\
\text{first}(Aa) & = \text{first}(A) \cup \begin{cases} \\
\text{first}(\alpha), & \text{if } A \in N_\epsilon \\
\emptyset, & \text{if } A \notin N_\epsilon
\end{cases}
\end{align*}
\]

where $a \in T$, $A \in N$, and $\alpha \in (N \cup T)^*$.
Computing First Sets (3)

The solutions can often be obtained directly by expanding out all definitions.

If necessary, the equations can be solved by iteration in a similar way to how N_ϵ is computed.

However, note that the smallest solution to set equations of the type

$$A = A \cup B$$

is simply

$$A = B$$

Computing First Sets (4)

Consider (again):

$$S \rightarrow ABC \quad B \rightarrow b | \epsilon$$
$$A \rightarrow aA | \epsilon \quad C \rightarrow c | d$$

First compute the nullable nonterminals:

$N_\epsilon = \{A, B\}$.

Then compute first sets:

$$\text{first}(A) = \text{first}(aA) \cup \text{first}(\epsilon)$$
$$= \{a\} \cup \emptyset = \{a\}$$

Computing First Sets (5)

$$S \rightarrow ABC \quad B \rightarrow b | \epsilon$$
$$A \rightarrow aA | \epsilon \quad C \rightarrow c | d$$

$$\text{first}(B) = \text{first}(b) \cup \text{first}(\epsilon)$$
$$= \{b\} \cup \emptyset = \{b\}$$

$$\text{first}(C) = \text{first}(c) \cup \text{first}(d)$$
$$= \{c\} \cup \{d\} = \{c, d\}$$

Computing First Sets (6)

$$S \rightarrow ABC \quad B \rightarrow b | \epsilon$$
$$A \rightarrow aA | \epsilon \quad C \rightarrow c | d$$

$$\text{first}(S) = \text{first}(ABC)$$
$$= \{A \in N_\epsilon\} \cup \text{first}(BC)$$
$$= \{B \in N_\epsilon \land C \notin N_\epsilon\}$$
$$\cup \text{first}(A) \cup \text{first}(B) \cup \text{first}(C) \cup \emptyset$$
$$= \{a\} \cup \{b\} \cup \{c, d\} = \{a, b, c, d\}$$
Computing Follow Sets (1)

For a CFG $G = (N, T, P, S)$, the sets $\text{follow}(A)$ are the smallest sets satisfying:

- $\{ \$ \} \subseteq \text{follow}(S)$
- If $A \rightarrow \alpha B \beta \in P$, then $\text{first}(\beta) \subseteq \text{follow}(B)$
- If $A \rightarrow \alpha B \beta \in P$, and nullable(\beta) then $\text{follow}(A) \subseteq \text{follow}(B)\$

$A, B \in N$, and $\alpha, \beta \in (N \cup T)^*$.

(It is assumed that there are no useless symbols; i.e., all symbols can appear in the derivation of some sentence.)

Computing Follow Sets (2)

$$S \rightarrow ABC \quad B \rightarrow b \mid \epsilon$$
$$A \rightarrow aA \mid \epsilon \quad C \rightarrow c \mid d$$

Constraints for $\text{follow}(S)$:

$$\{ \$ \} \subseteq \text{follow}(S)$$

Constraints for $\text{follow}(A)$ (note: \negnullable(BC)):

$$\text{first}(BC) \subseteq \text{follow}(A)$$
$$\text{first}(\epsilon) \subseteq \text{follow}(A)$$
$$\text{follow}(A) \subseteq \text{follow}(A)$$

Computing Follow Sets (3)

$$S \rightarrow ABC \quad B \rightarrow b \mid \epsilon$$
$$A \rightarrow aA \mid \epsilon \quad C \rightarrow c \mid d$$

Constraints for $\text{follow}(B)$ (note: \negnullable(C)):

$$\text{first}(C) \subseteq \text{follow}(B)$$

Constraints for $\text{follow}(C)$ (note: nullable(ϵ)):

$$\text{first}(\epsilon) \subseteq \text{follow}(C)$$
$$\text{follow}(S) \subseteq \text{follow}(C)$$

Computing Follow Sets (4)

In general:

$$A \subseteq C \land B \subseteq C \iff A \cup B \subseteq C$$

Also, constraints like $A \subseteq A$ are trivially satisfied and can be omitted. The constraints can thus be written as:

$$\{ \$ \} \subseteq \text{follow}(S)$$
$$\text{first}(BC) \cup \text{first}(\epsilon) \subseteq \text{follow}(A)$$
$$\text{first}(C) \subseteq \text{follow}(B)$$
$$\text{first}(\epsilon) \cup \text{follow}(S) \subseteq \text{follow}(C)$$
Computing Follow Sets (5)

Using

\[
\begin{align*}
\text{first}(\epsilon) &= \emptyset \\
\text{first}(C) &= \{c, d\} \\
\text{first}(BC) &= \text{first}(B) \cup \text{first}(C) \cup \emptyset \\
&= \{b\} \cup \{c, d\} = \{b, c, d\}
\end{align*}
\]

the constraints can be simplified further:

\[
\begin{align*}
\text{first}(B) \subseteq \text{follow}(S) \\
\text{first}(A) \subseteq \text{follow}(A) \\
\text{first}(B) \subseteq \text{follow}(B) \\
\text{follow}(S) \subseteq \text{follow}(C)
\end{align*}
\]

Computing Follow Sets (6)

Looking for the smallest sets satisfying these constraints, we get:

\[
\begin{align*}
\text{follow}(S) &= \{$\}\subseteq \text{follow}(B) \\
\text{follow}(A) &= \{b, c, d\} \subseteq \text{follow}(A) \\
\text{follow}(B) &= \{c, d\} \subseteq \text{follow}(B) \\
\text{follow}(C) &= \text{follow}(S) = \{$\}
\end{align*}
\]

LL(1), Left-Recursion, Ambiguity (1)

No left-recursive or ambiguous grammar can be LL(1)! For example, consider:

\[
A \rightarrow Aa \mid \beta
\]

First assume \(\text{first}(\beta) \neq \emptyset\).

Note that

- \(\text{first}(\beta) \subseteq \text{first}(A)\)
- \(\text{first}(A) \subseteq \text{first}(Aa)\)
- \(\text{first}(A) = \text{first}(Aa)\) if \(A \not\rightarrow \epsilon\)
- **Thus** \(\text{first}(Aa) \cap \text{first}(\beta) \neq \emptyset\). Not LL(1)!

LL(1), Left-Recursion, Ambiguity (2)

Now assume \(\text{first}(\beta) = \emptyset\).

This can only be the case if \(\beta \Rightarrow^* \epsilon\) and nothing else.

Assuming \(S \Rightarrow^* \alpha A \gamma\), we note

- \(a \in \text{first}(Aa)\) because \(A \Rightarrow \beta \Rightarrow^* \epsilon\), and
- \(a \in \text{follow}(A)\) because \(S \Rightarrow^* \alpha A \gamma \Rightarrow^* \alpha Aa \gamma\)

- **Because** \(\beta \Rightarrow^* \epsilon\), the LL(1) conditions require that \(\text{first}(Aa)\) and \(\text{follow}(A)\) be disjoint. But that is clearly not the case!
Left Factoring (1)

Left factoring means factoring out a common prefix among a group of productions. This can help making a grammar suitable for predictive recursive descent parsing.

Example:

\[S \rightarrow aXbY \mid aXbYcZ \]

Not suitable for predictive parsing!
But note common prefix! Let’s try to postpone the choice!

Left Factoring (2)

Before left factoring:

\[S \rightarrow aXbY \mid aXbYcZ \]

After left factoring:

\[\begin{align*} S & \rightarrow aXbY S' \\ S' & \rightarrow \epsilon \mid cZ \end{align*} \]

Now suitable for predictive parsing!