G52MAL
Machines and Their Languages
Lecture 17
Recursive-Descent Parsing: Predictive Parsing

Henrik Nilsson

University of Nottingham, UK
This lecture:

- The problem of choice revisited.
- Predictive Parsing and LL(1) grammars.
- Computation of First and Follow Sets.
- Left factoring
Recap: Recursive-Descent Parsing

Recursive-descent parsing is an example of the top-down parsing method:
Recap: Recursive-Descent Parsing

Recursive-descent parsing is an example of the top-down parsing method:

- One *parsing function* associated with each nonterminal:

 \[
 \text{parseX} :: [\text{Token}] \rightarrow \text{Maybe} [\text{Token}]
 \]
Recap: Recursive-Descent Parsing

Recursive-descent parsing is an example of the top-down parsing method:

- One **parsing function** associated with each nonterminal:

  ```haskell
  parseX :: [Token] -> Maybe [Token]
  ```

- Each function tries to derive a prefix of the current input according to the productions for the nonterminal in question.
Recap: Recursive-Descent Parsing

Recursive-descent parsing is an example of the top-down parsing method:

- One *parsing function* associated with each nonterminal:

 \[\text{parseX :: [Token] \to Maybe [Token]} \]

- Each function tries to derive a prefix of the current input according to the productions for the nonterminal in question.

- Functions for other nonterminals are invoked recursively as needed.
We also need a way to handle *choice*, as in

$$S \rightarrow AB \mid CD$$
Recap: Handling Choice

We also need a way to handle *choice*, as in

\[S \rightarrow AB \mid CD \]

- Looking at the *next input symbol* is sometimes enough:

\[S \rightarrow aB \mid cD \]
Recap: Handling Choice

We also need a way to handle choice, as in

\[S \rightarrow AB \mid CD \]

- Looking at the next input symbol is sometimes enough:

\[S \rightarrow aB \mid cD \]

- If not, all alternatives could be explored through backtracking:

\[
\text{parseX} :: [\text{Token}] \rightarrow [[\text{Token}]]
\]
Today, we are going to look into exactly when the next input symbol, a one symbol *lookahead*, can be used to make *all* parsing decisions.
Today, we are going to look into exactly when the next input symbol, a one symbol *lookahead*, can be used to make *all* parsing decisions.

We note that this can be the case even if the RHSs start with nonterminals:

\[
\begin{align*}
S & \rightarrow \ AB | \ CD \\
A & \rightarrow \ a | \ b \\
C & \rightarrow \ c | \ d
\end{align*}
\]
Predictive Parsing (2)

- **Predictive parsing** is an example of recursive descent parsing where *no* backtracking is needed.
- The grammar must be such that the next input symbol uniquely determines the next production to use.

Productions: \[X \rightarrow \alpha \mid \beta \]

\[
\text{parse}_X \ (t : ts) = \\
| \quad t \ ?? \quad \rightarrow \ \text{parse} \ \alpha \\
| \quad t \ ?? \quad \rightarrow \ \text{parse} \ \beta \\
| \quad \text{otherwise} \quad \rightarrow \ \text{Nothing}
\]
Predictive Parsing (3)

How to make the choices? Idea:
How to make the choices? Idea:

- Compute the set of terminal symbols that can start strings derived from each alternative, the \textit{first set}.
How to make the choices? Idea:

- Compute the set of terminal symbols that can start strings derived from each alternative, the *first set*.
- If there is a choice between two or more alternatives, insist that the first sets for those are *disjoint*.
How to make the choices? Idea:

- Compute the set of terminal symbols that can start strings derived from each alternative, the *first set*.

- If there is a choice between two or more alternatives, insist that the first sets for those are *disjoint*.

- The right choice can now be made simply by determining to which alternative’s first set the next input symbol belongs.
Predictive Parsing (4)

Productions: \(X \rightarrow \alpha | \beta \)

\[
\text{parseX} \ (t : ts) =
\begin{align*}
| \ t \in \text{first}(\alpha) & \rightarrow \text{parse} \ \alpha \\
| \ t \in \text{first}(\beta) & \rightarrow \text{parse} \ \beta \\
| \ \text{otherwise} & \rightarrow \text{Nothing}
\end{align*}
\]
Again, consider: \(X \rightarrow \alpha \mid \beta \)

What if e.g. \(\beta \Rightarrow^* \epsilon \)?

Clearly, the next input symbol could be a terminal that can follow a string derivable form \(X \)!

\[
\text{parse}_X (t : ts) = \\
\begin{cases}
\text{parse } \alpha & | \ t \in \text{first}(\alpha) \\
\text{parse } \beta & | \ t \in \text{first}(\beta) \cup \text{follow}(X) \\
\text{Nothing} & | \ \text{otherwise}
\end{cases}
\]

The branches must be mutually exclusive!
Following (roughly) “the Dragon Book” [ASU86]

For a CFG $G = (N, T, P, S)$:

$\text{first}(\alpha) = \{ a \in T \mid \alpha \xrightarrow{G}^* a\beta \}$

$\text{follow}(A) = \{ a \in T \mid S \xrightarrow{G}^* \alpha A a \beta \}$

$\cup \{ \$ \mid S \xrightarrow{G}^* \alpha A \}$

where we assume $\alpha, \beta \in (N \cup T)^*$, $A \in N$, and
where $\$ is a special “end of input” marker.
First and Follow Sets (2)

Consider:

\[
\begin{align*}
S & \rightarrow ABC \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow b \mid \epsilon \\
C & \rightarrow c \mid d
\end{align*}
\]

\[
\begin{align*}
\text{first}(C) & = \{c, \ d\} \\
\text{first}(B) & = \{b\} \\
\text{first}(A) & = \{a\} \\
\text{first}(S) & = \text{first}(ABC) \\
& = \{a, \ b, \ c, \ d\}
\end{align*}
\]
First and Follow Sets (3)

Same grammar:

\[
\begin{align*}
S & \rightarrow ABC \\
A & \rightarrow aA | \epsilon \\
B & \rightarrow b | \epsilon \\
C & \rightarrow c | d
\end{align*}
\]

Follow sets:

\[
\begin{align*}
\text{follow}(C) & = \{\}$\} \\
\text{follow}(B) & = \text{first}(C) = \{c, d\} \\
\text{follow}(A) & = [\text{because } B \quad \Rightarrow \quad \epsilon] \\
& \quad \quad \quad \quad \text{first}(B) \cup \text{first}(C) \\
& = \{b, c, d\}
\end{align*}
\]
LL(1) Grammars (1)

Consider all productions for a nonterminal A in some grammar:

$$A \rightarrow \alpha_1 | \alpha_2 | \ldots | \alpha_n$$
Consider all productions for a nonterminal \(A \) in some grammar:

\[
A \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n
\]

In the parsing function for \(A \), on input symbol \(t \), we parse according to \(\alpha_i \) if \(t \in \text{first}(\alpha_i) \).
LL(1) Grammars (1)

Consider all productions for a nonterminal A in some grammar:

$$A \to \alpha_1 | \alpha_2 | \ldots | \alpha_n$$

In the parsing function for A, on input symbol t, we parse according to α_i if $t \in \text{first}(\alpha_i)$.

If $\alpha_i \Rightarrow^* \epsilon$, we should parse according to α_i also if $t \in \text{follow}(A)$!
Thus, if:
Thus, if:

- \(\text{first}(\alpha_i) \cap \text{first}(\alpha_j) = \emptyset \) for \(1 \leq i < j \leq n \), and
Thus, if:

- \(\text{first}(\alpha_i) \cap \text{first}(\alpha_j) = \emptyset \) for \(1 \leq i < j \leq n \), and

- if \(\alpha_i \Rightarrow^* \epsilon \) for some \(i \), then, for all \(1 \leq j \leq n, j \neq i \).
LL(1) Grammars (2)

Thus, if:

- \(\text{first}(\alpha_i) \cap \text{first}(\alpha_j) = \emptyset \) for \(1 \leq i < j \leq n \), and
- if \(\alpha_i \xrightarrow{*} \epsilon \) for some \(i \), then, for all \(1 \leq j \leq n, j \neq i \),
 - \(\alpha_j \nRightarrow \epsilon \), and
Thus, if:

- \(\text{first}(\alpha_i) \cap \text{first}(\alpha_j) = \emptyset \) for \(1 \leq i < j \leq n \), and
- if \(\alpha_i \Rightarrow^* \epsilon \) for some \(i \), then, for all \(1 \leq j \leq n \), \(j \neq i \),
 - \(\alpha_j \not\Rightarrow^* \epsilon \), and
 - \(\text{follow}(A) \cap \text{first}(\alpha_j) = \emptyset \)
Thus, if:

- \(\text{first}(\alpha_i) \cap \text{first}(\alpha_j) = \emptyset \) for \(1 \leq i < j \leq n \), and
- if \(\alpha_i \Rightarrow^* \epsilon \) for some \(i \), then, for all \(1 \leq j \leq n, j \neq i \),
 - \(\alpha_j \not\Rightarrow^* \epsilon \), and
 - \(\text{follow}(A) \cap \text{first}(\alpha_j) = \emptyset \)

then it is always clear what do do!
Thus, if:

- \(\text{first}(\alpha_i) \cap \text{first}(\alpha_j) = \emptyset \) for \(1 \leq i < j \leq n \), and
- if \(\alpha_i \Rightarrow^* \epsilon \) for some \(i \), then, for all \(1 \leq j \leq n, j \neq i \),
 - \(\alpha_j \not\Rightarrow^* \epsilon \), and
 - \(\text{follow}(A) \cap \text{first}(\alpha_j) = \emptyset \)

then it is always clear what do do!

A grammar satisfying these conditions is said to be an **LL(1)** grammar.
In order to compute the first and follow sets for a grammar \(G = (N, T, P, S) \), we first need to know all nonterminals \(A \in N \) such that \(A \xrightarrow{*} \epsilon \); i.e. the set \(N_{\epsilon} \subseteq N \) of *nullable* nonterminals.

Let \(\text{syms}(\alpha) \) denote the *set* of symbols in a string \(\alpha \):

\[
\begin{align*}
\text{syms} & \in (N \cup T)^* \rightarrow \mathcal{P}(N \cup T) \\
\text{syms}(\epsilon) & = \emptyset \\
\text{syms}(X\alpha) & = \{X\} \cup \text{syms}(\alpha)
\end{align*}
\]
The set N_ϵ is the **smallest** solution to the equation

$$N_\epsilon = \{ A \mid A \to \alpha \in P \land \forall X \in \text{syms}(\alpha) . X \in N_\epsilon \}$$

(Note that $A \in N_\epsilon$ if $A \to \epsilon \in P$ because $\text{syms}(\epsilon) = \emptyset$ and $\forall X \in \emptyset$ is trivially true.)

We can now define a predicate `nullable` on **strings** of grammar symbols:

$$\text{nullable} \in (N \cup T)^* \to \text{Bool}$$

$\text{nullable}(\epsilon) = \text{true}$

$\text{nullable}(X\alpha) = X \in N_\epsilon \land \text{nullable}(\alpha)$
Nullable Nonterminals (3)

The equation for N_ϵ can be solved iteratively as follows:

1. Initialize N_ϵ to $\{A \mid A \rightarrow \epsilon \in P\}$.

2. If there is a production $A \rightarrow \alpha$ such that $\forall X \in \text{sym}(\alpha) \cdot X \in N_\epsilon$, then add A to N_ϵ.

3. Repeat step 2 until no further nullable nonterminals can be found.
Nullable Nonterminals (4)

Consider the following grammar:

\[
\begin{align*}
S & \rightarrow ABC \mid AB \\
A & \rightarrow aA \mid BB \\
B & \rightarrow b \mid \epsilon \\
C & \rightarrow c \mid d
\end{align*}
\]
Nullable Nonterminals (4)

Consider the following grammar:

\[
S \rightarrow ABC | AB \\
A \rightarrow aA | BB \\
B \rightarrow b | \epsilon \\
C \rightarrow c | d
\]

• Because \(B \rightarrow \epsilon \) is a production, \(B \in N_\epsilon \).
Consider the following grammar:

\[
S \rightarrow ABC \mid AB \quad B \rightarrow b \mid \epsilon \\
A \rightarrow aA \mid BB \quad C \rightarrow c \mid d
\]

- Because \(B \rightarrow \epsilon \) is a production, \(B \in N_\epsilon \).
- Because \(A \rightarrow BB \) is a production and \(B \in N_\epsilon \), additionally \(A \in N_\epsilon \).
Nullable Nonterminals (4)

Consider the following grammar:

\[
S \rightarrow ABC \mid AB \\
A \rightarrow aA \mid BB \\
B \rightarrow b \mid \epsilon \\
C \rightarrow c \mid d
\]

• Because \(B \rightarrow \epsilon \) is a production, \(B \in N_\epsilon \).
• Because \(A \rightarrow BB \) is a production and \(B \in N_\epsilon \), additionally \(A \in N_\epsilon \).
• Because \(S \rightarrow AB \) is a production, and \(A, B \in N_\epsilon \), additionally \(S \in N_\epsilon \).
Nullable Nonterminals (4)

Consider the following grammar:

\[
\begin{align*}
S & \rightarrow ABC \mid AB \\
A & \rightarrow aA \mid BB \\
B & \rightarrow b \mid \epsilon \\
C & \rightarrow c \mid d
\end{align*}
\]

• Because \(B \rightarrow \epsilon \) is a production, \(B \in N_\epsilon \).
• Because \(A \rightarrow BB \) is a production and \(B \in N_\epsilon \), additionally \(A \in N_\epsilon \).
• Because \(S \rightarrow AB \) is a production, and \(A, B \in N_\epsilon \), additionally \(S \in N_\epsilon \).
• No more production with nullable RHS. The set of nullable symbols \(N_\epsilon = \{S, A, B\} \).
For a CFG $G = (N, T, P, S)$, the sets $\text{first}(A)$ for $A \in N$ are the smallest sets satisfying:

\[
\begin{align*}
\text{first}(A) & \subseteq T \\
\text{first}(A) & = \bigcup_{A \rightarrow \alpha \in P} \text{first}(\alpha)
\end{align*}
\]
For strings, first is defined as (note the \textit{overloaded} notation):

\[
\begin{align*}
\text{first} &\in (N \cup T)^* \rightarrow \mathcal{P}(T) \\
\text{first}(\epsilon) &= \emptyset \\
\text{first}(a\alpha) &= \{a\} \\
\text{first}(A\alpha) &= \text{first}(A) \cup \left\{ \begin{array}{ll}
\text{first}(\alpha), & \text{if } A \in N \setminus \epsilon \\
\emptyset, & \text{if } A \notin N \setminus \epsilon
\end{array} \right.
\end{align*}
\]

where $a \in T$, $A \in N$, and $\alpha \in (N \cup T)^*$.

Computing First Sets (3)

The solutions can often be obtained directly by expanding out all definitions.

If necessary, the equations can be solved by iteration in a similar way to how \(N_\epsilon \) is computed.

However, note that the smallest solution to set equations of the type

\[A = A \cup B \]

is simply

\[A = B \]
Consider (again):

\[
\begin{align*}
S & \rightarrow ABC \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow b \mid \epsilon \\
C & \rightarrow c \mid d
\end{align*}
\]

First compute the nullable nonterminals:

\[N_\epsilon = \{A, B\} \]

Then compute first sets:

\[
\text{first}(A) = \text{first}(aA) \cup \text{first}(\epsilon) = \{a\} \cup \emptyset = \{a\}
\]
Computing First Sets (5)

\[
S \rightarrow ABC \\
A \rightarrow aA | \epsilon \\
B \rightarrow b | \epsilon \\
C \rightarrow c | d
\]

\[
\text{first}(B) = \text{first}(b) \cup \text{first}(\epsilon) \\
= \{b\} \cup \emptyset = \{b\}
\]

\[
\text{first}(C) = \text{first}(c) \cup \text{first}(d) \\
= \{c\} \cup \{d\} = \{c, d\}
\]
Computing First Sets (6)

\[S \to ABC \quad B \to b \mid \epsilon \]
\[A \to aA \mid \epsilon \quad C \to c \mid d \]

\[
\text{first}(S') = \text{first}(ABC') \\
= \{A \in N_\epsilon\} \\
= \{B \in N_\epsilon \land C \notin N_\epsilon\} \\
\text{first}(A) \cup \text{first}(BC') \\
= \{a\} \cup \{b\} \cup \{c, d\} = \{a, b, c, d\}
\]
Computing Follow Sets (1)

For a CFG $G = (N, T, P, S)$, the sets $\text{follow}(A)$ are the smallest sets satisfying:

- $\{$$\}$ \subseteq $\text{follow}(S)$
- If $A \rightarrow \alpha B \beta \in P$, then $\text{first}(\beta) \subseteq \text{follow}(B)$
- If $A \rightarrow \alpha B \beta \in P$, and $\text{nullable}(\beta)$, then $\text{follow}(A) \subseteq \text{follow}(B)$

$A, B \in N$, and $\alpha, \beta \in (N \cup T)^*$.

(It is assumed that there are no $\textit{useless}$ symbols; i.e., all symbols can appear in the derivation of some sentence.)
Computing Follow Sets (2)

\[
S \rightarrow ABC \\
A \rightarrow aA | \epsilon \\
B \rightarrow b | \epsilon \\
C \rightarrow c | d
\]

Constraints for \text{follow}(S'):

\[
\{\$\} \subseteq \text{follow}(S')
\]
Computing Follow Sets (2)

\[
\begin{align*}
S & \rightarrow ABC \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow b \mid \epsilon \\
C & \rightarrow c \mid d
\end{align*}
\]

Constraints for follow(\(S\)):

\[
\{\$\} \subseteq \text{follow}(S)
\]

Constraints for follow(\(A\)) (note: ¬\text{nullable}(BC)):

\[
\begin{align*}
\text{first}(BC) & \subseteq \text{follow}(A) \\
\text{first}(\epsilon) & \subseteq \text{follow}(A) \\
\text{follow}(A) & \subseteq \text{follow}(A)
\end{align*}
\]
Computing Follow Sets (3)

\[
S \rightarrow ABC \\
A \rightarrow aA | \epsilon \\
B \rightarrow b | \epsilon \\
C \rightarrow c | d
\]

Constraints for \text{follow}(B) (\text{note}: \neg \text{nullable}(C')):

\[
\text{first}(C') \subseteq \text{follow}(B)
\]
Computing Follow Sets (3)

\[

e S \rightarrow ABC \\
\rightarrow aA | \epsilon \\
A \rightarrow aA | \epsilon \\
B \rightarrow b | \epsilon \\
C \rightarrow c | d
\]

Constraints for \text{follow}(B) (\textbf{note}: \neg \text{nullable}(C')):

\[
\text{first}(C') \subseteq \text{follow}(B)
\]

Constraints for \text{follow}(C') (\textbf{note}: \text{nullable}(\epsilon)):

\[
\text{first}(\epsilon) \subseteq \text{follow}(C') \\
\text{follow}(S') \subseteq \text{follow}(C')
\]
Computing Follow Sets (4)

In general:

\[A \subseteq C \land B \subseteq C \iff A \cup B \subseteq C \]

Also, constraints like \(A \subseteq A \) are trivially satisfied and can be omitted.

The constraints can thus be written as:

\[
\begin{align*}
\{$\}$ & \subseteq \text{follow}(S') \\
\text{first}(BC') \cup \text{first}(\epsilon) & \subseteq \text{follow}(A) \\
\text{first}(C') & \subseteq \text{follow}(B) \\
\text{first}(\epsilon) \cup \text{follow}(S') & \subseteq \text{follow}(C)
\end{align*}
\]
Computing Follow Sets (5)

Using

\[
\begin{align*}
\text{first}(\epsilon) &= \emptyset \\
\text{first}(C) &= \{c, d\} \\
\text{first}(BC) &= \text{first}(B) \cup \text{first}(C) \cup \emptyset \\
&= \{b\} \cup \{c, d\} = \{b, c, d\}
\end{align*}
\]

the constraints can be simplified further:

\[
\begin{align*}
\{\$\} &\subseteq \text{follow}(S') \\
\{b, c, d\} &\subseteq \text{follow}(A) \\
\{c, d\} &\subseteq \text{follow}(B) \\
\text{follow}(S') &\subseteq \text{follow}(C)
\end{align*}
\]
Computing Follow Sets (6)

Looking for the smallest sets satisfying these constraints, we get:

\[
\begin{align*}
\text{follow}(S) &= \{\$\} \\
\text{follow}(A) &= \{b, c, d\} \\
\text{follow}(B) &= \{c, d\} \\
\text{follow}(C) &= \text{follow}(S) = \{\$\}
\end{align*}
\]
LL(1), Left-Recursion, Ambiguity (1)

No left-recursive or ambiguous grammar can be LL(1)!
No left-recursive or ambiguous grammar can be LL(1)! For example, consider:

\[A \rightarrow Aa \mid \beta \]

First assume \(\text{first}(\beta) \neq \emptyset \).
No left-recursive or ambiguous grammar can be LL(1)! For example, consider:

\[A \rightarrow Aa \mid \beta \]

First assume \(\text{first}(\beta) \neq \emptyset\).

Note that

- \(\text{first}(\beta) \subseteq \text{first}(A)\)
- \(\text{first}(A) \subseteq \text{first}(Aa)\)
 \(\text{first}(A) = \text{first}(Aa)\) if \(A \not\Rightarrow \epsilon\)
LL(1), Left-Recursion, Ambiguity (1)

No left-recursive or ambiguous grammar can be LL(1)! For example, consider:

\[A \rightarrow Aa \mid \beta \]

First assume \(\text{first}(\beta) \neq \emptyset \).

Note that

- \(\text{first}(\beta) \subseteq \text{first}(A) \)
- \(\text{first}(A) \subseteq \text{first}(Aa) \)
 \(\text{(first}(A) = \text{first}(Aa) \text{ if } A \not\Rightarrow \epsilon) \)
- **Thus** \(\text{first}(Aa) \cap \text{first}(\beta) \neq \emptyset \). Not LL(1)!
Now assume $\text{first}(\beta) = \emptyset$
Now assume $\text{first}(\beta) = \emptyset$

This can only be the case if $\beta \Rightarrow^* \epsilon$ and nothing else.
Now assume $\text{first}(\beta) = \emptyset$

This can only be the case if $\beta \Rightarrow^* \epsilon$ and nothing else.

Assuming $S \Rightarrow^* \alpha A \gamma$, we note

- $a \in \text{first}(Aa)$ because $A \Rightarrow^* \beta \Rightarrow^* \epsilon$, and
- $a \in \text{follow}(A)$ because $S \Rightarrow^* \alpha A \gamma \Rightarrow \alpha Aa \gamma$
LL(1), Left-Recursion, Ambiguity (2)

Now assume $\text{first}(\beta) = \emptyset$

This can only be the case if $\beta \Rightarrow^* \epsilon$ and nothing else.

Assuming $S \Rightarrow^* \alpha A \gamma$, we note

- $a \in \text{first}(Aa)$ because $A \Rightarrow \beta \Rightarrow^* \epsilon$, and
- $a \in \text{follow}(A)$ because $S \Rightarrow^* \alpha A \gamma \Rightarrow \alpha A a \gamma$

- Because $\beta \Rightarrow^* \epsilon$, the LL(1) conditions require that $\text{first}(Aa)$ and $\text{follow}(A)$ be disjoint. But that is clearly not the case!
Left factoring means factoring out a common prefix among a group of productions. This can help making a grammar suitable for predictive recursive descent parsing.

Example:

\[S \rightarrow aXbY \mid aXbYcZ \]

Not suitable for predictive parsing!

But note common prefix! Let’s try to postpone the choice!
Left Factoring (2)

Before left factoring:

\[S \rightarrow aXbY \mid aXbYcZ \]

After left factoring:

\[S' \rightarrow aXbYS'' \]
\[S'' \rightarrow \epsilon \mid cZ \]

Now suitable for predictive parsing!