
G52MAL

Machines and Their Languages
Lecture 18 & 19

Turing Machines and Decidability

Henrik Nilsson

University of Nottingham

G52MALMachines and Their LanguagesLecture 18 & 19 – p.1/18

Turing Machines (1)

• A Turing Machine (TM) is a mathematical
model of a general-purpose computer.

• A TM is a generalisation of a PDA: TM = FA +
infinite tape

• Mainly used to study the notion of computation:
what (exactly!) can computers do (given suffi-
cient time and memory) and what can they
not do.

• There are other notions of computation, e.g.
the λ-calculus introduced by Alonzo Church
(G54FOP!).

G52MALMachines and Their LanguagesLecture 18 & 19 – p.2/18

Turing Machines (2)

Finite Control

B B x y z z B

movable read/write head

input

G52MALMachines and Their LanguagesLecture 18 & 19 – p.3/18

Turing Machines (3)

• All suggested notions of computation have so
far proved to be equivalent.

• The Church-Turing Thesis: “Every function
which would naturally be regarded as
‘computable’ can be computed by a TM”.

• At first, given how simple TMs are, it may
seem surprising they can do much at all. E.g.
how can they even add or multiply?

• We will see that a TM at least is more
expressive than a PDA.

G52MALMachines and Their LanguagesLecture 18 & 19 – p.4/18

Definition of a Turing Machine

A TM M = (Q,Σ,Γ, δ, q0, B, F ) where

• Q is a finite set of states

• Σ is the input alphabet

• Γ is the tape alphabet, Σ ⊂ Γ (finite)

• δ ∈ Q× Γ → {stop} ∪Q× Γ× {L,R} is the
transition function

• q0 ∈ Q is the initial state

• B is the blank symbol, B ∈ Γ, B /∈ Σ

• F ⊆ Q are the accepting (final) states

G52MALMachines and Their LanguagesLecture 18 & 19 – p.5/18

Instantaneous Description (ID)

Instantaneous Descriptions (ID) describe the
state of a TM computation:

ID = Γ∗ ×Q× Γ∗

(γL, q, γR) ∈ ID means:

• TM is in state q

• γL is the non-blank part of the tape to the left
of the head.

• γR is the non-blank part of the tape to the
right of the head, including the current
position.

G52MALMachines and Their LanguagesLecture 18 & 19 – p.6/18

The Next State Relation (1)

The next state relation on ID:

⊢
M

⊆ ID × ID

Read

id 1 ⊢
M

id 2

“TM M moves in one step from id 1 to id 2.”

G52MALMachines and Their LanguagesLecture 18 & 19 – p.7/18

The Next State Relation (2)

Let q, q′ ∈ Q, x, y, z ∈ Γ, γL, γR ∈ Γ∗

1. (γL, q, xγR) ⊢
M

(γLy, q
′, γR) if δ(q, x) = (q′, y,R)

2. (γLz, q, xγR) ⊢
M

(γL, q
′, zyγR) if δ(q, x) = (q′, y,L)

3. (ǫ, q, xγR) ⊢
M

(ǫ, q′, ByγR) if δ(q, x) = (q′, y,L)

4. (γL, q, ǫ) ⊢
M

(γLy, q
′, ǫ) if δ(q, B) = (q′, y,R)

5. (γLz, q, ǫ) ⊢
M

(γL, q
′, zy) if δ(q, B) = (q′, y,L)

6. (ǫ, q, ǫ) ⊢
M

(ǫ, q′, By) if δ(q, B) = (q′, y,L)

G52MALMachines and Their LanguagesLecture 18 & 19 – p.8/18

The Language of a TM (1)

L(M) = {w ∈ Σ∗ | (ǫ, q0, w)
∗

⊢
M

(γL, q, γR) ∧ q ∈ F}

A TM stops if it reaches an accepting state.

A TM stops in a non-accepting state if the
transition function returns stop for that state and
current tape input.

However, it may also never stop!

This is unlike the machines we have encountered
before.

G52MALMachines and Their LanguagesLecture 18 & 19 – p.9/18



The Language of a TM (2)

If a particular TM M always stops, either in an
accepting or a non-accepting state, then M
decides L(M).

Given that TMs model general purpose computers,
it should not come as a surprise that they can
loop. Consider e.g.

input x; while (x<10);

What may come as a surprise is that there are
languages for which a TM necessarily cannot
decide membership; i.e., will loop on some inputs.

G52MALMachines and Their LanguagesLecture 18 & 19 – p.10/18

Example

Construct a TM that accepts the language
{anbncn | n ∈ N}.

This is a language that cannot be defined by a
CFG or recognized by a PDA.

On the whiteboard.

There are many TM similators on-line. Try this
(or some other) example with one of those. E.g.:

http://ironphoenix.org/tm

G52MALMachines and Their LanguagesLecture 18 & 19 – p.11/18

Recursive Language

L is recursive if L = L(M) for a TM M such that

1. if w ∈ L, then M accepts w (and thus halts)

2. if w /∈ L, then M eventually halts without ever
entering an accepting state.

Such a TM corresponds to an algorithm: a
well-defined sequence of steps that always
produces an answer in finite space and time.

We also say that M decides L.

G52MALMachines and Their LanguagesLecture 18 & 19 – p.12/18

Recursively Enumerable (RE) Language

L is recursivele enumerable (RE) if L = L(M)
for a TM M .

I.e., M is not required to halt for w /∈ L.

Such a TM corresponds to a semi-algorithm.

Why “recursively enumerable”?

Because it is possible to construct a TM that
enumerates all strings in such a language in
some order. (But it will necessarily keep trying to
enumerate strings forever.)

G52MALMachines and Their LanguagesLecture 18 & 19 – p.13/18

Decidable and Undecidable

There are even languages that have no TM! The
non-RE languages.

• Decidable: a language or problem (encoded
as a language) that is recursive.

• Undecidable: a language or problem that is
RE but not recursive, or non-RE.

Example of non-RE language: The set of all
Turing machines accepting exactly 3 words.

(In fact, a simple cardinality argument shows that
most languages are non-RE: there are “many
more” languages than there are TMs.)

G52MALMachines and Their LanguagesLecture 18 & 19 – p.14/18

Halting Problem

Famous example of a RE language that is not
recursive; i.e. an undecidable language.

Informally: Can we write a program (TM) that takes
the text of an arbitrary program and input to that
program as input and decides whether the input
program terminates on the given input or not?

Formulated as a language: Is there a TM that
decides the language of terminating
programs/TMs?

Proof sketch on whiteboard.

G52MALMachines and Their LanguagesLecture 18 & 19 – p.15/18

Other Undecidable Problems

• Whether two programs (computable
functions) are equal

• Whether a CFG is ambiguous

• Whether two CFGs are equivalent

• Rice’s Theorem: Whether the language of a
given TM has some particular non-trivial
property. (Non-trivial: holds for some but not
all languages.)

G52MALMachines and Their LanguagesLecture 18 & 19 – p.16/18

Rice’s Theorem (1)

(After Henry Gordon Rice; also known as the
Rice-Myhill-Shapiro theorem.)

Let C be a set of languages. Define

LC = { M | L(M) ∈ C }

where M ranges over all TMs. Then either LC is
empty, or it contains all TMs, or it is undecidable.

For example, C might be the set of regular languages.
As there are some TMs that recognise regular
languages, but not all do, LC is undecidable in
this case.

G52MALMachines and Their LanguagesLecture 18 & 19 – p.17/18

Rice’s Theorem (2)

Consequence: There are lots of really useful
programs that cannot be implemented perfectly.

E.g., virus detection: virus programs do exist, but
not all programs are viruses; being a virus is a
non-trivial property.

Caveat: Rice’s theorem is concerned with
properties of the language accepted by a TM,
not about properties of the TM (code) itself. E.g.,
it is certainly decidable if a TM has at most 10
states, if it terminates in less than 100 steps, etc.

http://www.eecs.berkeley.edu/~luca/cs172/noterice.pdf

G52MALMachines and Their LanguagesLecture 18 & 19 – p.18/18


	Turing Machines (1)
	Turing Machines (2)
	Turing Machines (3)
	Definition of a Turing Machine
	Instantaneous Description (ID)
	The Next State Relation (1)
	The Next State Relation (2)
	The Language of a TM (1)
	The Language of a TM (2)
	Example
	Recursive Language
	Recursively Enumerable (RE)
Language
	Decidable and Undecidable
	Halting Problem
	Other Undecidable Problems
	Rice's Theorem (1)
	Rice's Theorem (2)

