Turing Machines (1)

- A Turing Machine (TM) is a mathematical model of a general-purpose computer.
Turing Machines (1)

- A Turing Machine (TM) is a mathematical model of a general-purpose computer.
- A TM is a generalisation of a PDA: TM = FA + infinite tape
A Turing Machine (TM) is a mathematical model of a general-purpose computer.

A TM is a generalisation of a PDA: TM = FA + infinite tape

Mainly used to study the **notion of computation**: what (exactly!) can computers do (given sufficient time and memory) and what can they not do.
Turing Machines (1)

• A Turing Machine (TM) is a mathematical model of a general-purpose computer.
• A TM is a generalisation of a PDA: TM = FA + infinite tape
• Mainly used to study the notion of computation: what (exactly!) can computers do (given sufficient time and memory) and what can they not do.
• There are other notions of computation, e.g. the \(\lambda \)-calculus introduced by Alonzo Church (G54FOP!).
Turing Machines (2)

- All suggested notions of computation have so far proved to be equivalent.
All suggested notions of computation have so far proved to be equivalent.

The Church-Turing Thesis: “Every function which would naturally be regarded as ‘computable’ can be computed by a TM.”
All suggested notions of computation have so far proved to be equivalent.

The Church-Turing Thesis: “Every function which would naturally be regarded as ‘computable’ can be computed by a TM”.

At first, given how simple TMs are, it may seem surprising they can do much at all. E.g. how can they even add or multiply?
All suggested notions of computation have so far proved to be equivalent.

The Church-Turing Thesis: “Every function which would naturally be regarded as ‘computable’ can be computed by a TM”.

At first, given how simple TMs are, it may seem surprising they can do much at all. E.g. how can they even add or multiply?

We will see that a TM at least is more expressive than a PDA.
Definition of a Turing Machine

A TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ where

- Q is a finite set of states
- Σ is the input alphabet
- Γ is the tape alphabet, $\Sigma \subset \Gamma$ (finite)
- $\delta \in Q \times \Gamma \rightarrow \{\text{stop}\} \cup Q \times \Gamma \times \{L, R\}$ is the transition function
- $q_0 \in Q$ is the initial state
- B is the blank symbol, $B \in \Gamma$, $B \notin \Sigma$
- $F \subseteq Q$ are the accepting (final) states
Instantaneous Descriptions (ID) describe the state of a TM computation:

\[ID = \Gamma^* \times Q \times \Gamma^* \]

\((\gamma_L, q, \gamma_R) \in ID\) means:

- TM is in state \(q\)
- \(\gamma_L\) is the non-blank part of the tape to the left of the head.
- \(\gamma_R\) is the non-blank part of the tape to the right of the head, including the current position.
The Next State Relation (1)

The next state relation on ID:

\[M \subseteq ID \times ID \]

Read

\[id_1 \vdash_M id_2 \]

"TM \(M \) moves in one step from \(id_1 \) to \(id_2 \)."
The Next State Relation (2)

Let \(q, q' \in Q, x, y, z \in \Gamma, \gamma_L, \gamma_R \in \Gamma^* \)

1. \((\gamma_L, q, x\gamma_R) \vdash_M (\gamma_Ly, q', \gamma_R) \) if \(\delta(q, x) = (q', y, R) \)

2. \((\gamma_Lz, q, x\gamma_R) \vdash_M (\gamma_L, q', zy\gamma_R) \) if \(\delta(q, x) = (q', y, L) \)

3. \((\epsilon, q, x\gamma_R) \vdash_M (\gamma_L, q', By\gamma_R) \) if \(\delta(q, x) = (q', y, L) \)

4. \((\gamma_L, q, \epsilon) \vdash_M (\gamma_Ly, q', \epsilon) \) if \(\delta(q, B) = (q', y, R) \)

5. \((\gamma_Lz, q, \epsilon) \vdash_M (\gamma_L, q', zy) \) if \(\delta(q, B) = (q', y, L) \)

6. \((\epsilon, q, \epsilon) \vdash_M (\gamma_L, q', By) \) if \(\delta(q, B) = (q', y, L) \)
The Language of a TM (1)

\[L(M) = \{ w \in \Sigma^* \mid (\epsilon, q_0, w) \vdash^*_M (\gamma_L, q, \gamma_R) \land q \in F \} \]
The Language of a TM (1)

$L(M) = \{ w \in \Sigma^* \mid (\epsilon, q_0, w) \xrightarrow{\star} M (\gamma_L, q, \gamma_R) \land q \in F \}$

A TM stops if it reaches an accepting state.
The Language of a TM (1)

\[L(M) = \{ w \in \Sigma^* \mid (\epsilon, q_0, w) \xrightarrow{\ast} (\gamma_L, q, \gamma_R) \land q \in F \} \]

A TM stops if it reaches an accepting state.

A TM stops in a non-accepting state if the transition function returns \text{stop} for that state and current tape input.
The Language of a TM (1)

\[L(M) = \{ w \in \Sigma^* \mid (\epsilon, q_0, w) \xrightarrow{\star} (\gamma_L, q, \gamma_R) \land q \in F \} \]

A TM stops if it reaches an accepting state.
A TM stops in a non-accepting state if the transition function returns \textit{stop} for that state and current tape input.
However, it may also \textit{never} stop!
This is unlike the machines we have encountered before.
The Language of a TM (2)

If a particular TM M always stops, either in an accepting or a non-accepting state, then M decides $L(M)$.
The Language of a TM (2)

If a particular TM M *always* stops, either in an accepting or a non-accepting state, then M *decides* $L(M)$.

Given that TMs model general purpose computers, it should not come as a surprise that they can loop. Consider e.g.

```plaintext
input x; while (x<10);
```
If a particular TM M always stops, either in an accepting or a non-accepting state, then M decides $L(M)$.

Given that TMs model general purpose computers, it should not come as a surprise that they can loop. Consider e.g.

```plaintext
    input x; while (x<10);
```

What may come as a surprise is that there are languages for which a TM necessarily cannot decide membership; i.e., will loop on some inputs.
Example

Construct a TM that accepts the language \(\{a^n b^n c^n \mid n \in \mathbb{N}\} \).

This is a language that cannot be defined by a CFG or recognized by a PDA.

On the whiteboard.

There are many TM simulators on-line. Try this (or some other) example with one of those. E.g.:

http://ironphoenix.org/tm
Recursive Language

L is **recursive** if $L = L(M)$ for a TM M such that

1. if $w \in L$, then M accepts w (and thus halts)
2. if $w \notin L$, then M eventually halts without ever entering an accepting state.
Recursive Language

L is **recursive** if $L = L(M)$ for a TM M such that

1. if $w \in L$, then M accepts w (and thus halts)
2. if $w \notin L$, then M eventually halts without ever entering an accepting state.

Such a TM corresponds to an **algorithm**: a well-defined sequence of steps that always produces an answer in finite space and time.
Recursive Language

L is \textit{recursive} if $L = L(M)$ for a TM M such that

1. if $w \in L$, then M accepts w (and thus halts)
2. if $w \notin L$, then M eventually halts without ever entering an accepting state.

Such a TM corresponds to an \textit{algorithm}: a well-defined sequence of steps that always produces an answer in finite space and time.

We also say that M decides L.
Recursively Enumerable (RE) Language

L is *recursively enumerable (RE)* if $L = L(M)$ for a TM M.

I.e., M is not required to halt for $w \notin L$.
Recursively Enumerable (RE) Language

L is *recursive enumerable (RE)* if $L = L(M)$ for a TM M.

I.e., M is not required to halt for $w \notin L$.

Such a TM corresponds to a *semi-algorithm*.
Recursively Enumerable (RE) Language

Let L be \textit{recursively enumerable (RE)} if $L = L(M)$ for a TM M.

I.e., M is not required to halt for $w \notin L$.

Such a TM corresponds to a \textit{semi-algorithm}.

Why “recursively enumerable”?
Recursively Enumerable (RE) Language

L is recursively enumerable (RE) if $L = L(M)$ for a TM M.

I.e., M is not required to halt for $w \notin L$.

Such a TM corresponds to a semi-algorithm.

Why “recursively enumerable”?

Because it is possible to construct a TM that enumerates all strings in such a language in some order. (But it will necessarily keep trying to enumerate strings forever.)
Decidable and Undecidable

There are even languages that have no TM! The non-RE languages.

- **Decidable**: a language or problem (encoded as a language) that is recursive.
- **Undecidable**: a language or problem that is RE but not recursive, or non-RE.
Halting Problem

Famous example of a RE language that is not recursive; i.e. an undecidable language.

On the whiteboard.
Other Undecidable Problems

- Whether two programs (computable functions) are equal
- Whether a CFG is ambiguous
- Whether two CFGs are equivalent
- Rice’s Theorem: Whether the language of a given TM has some particular non-trivial property.

Consequence: There are lots of really useful programs that cannot be implemented perfectly. E.g. virus detection.