G52CMP: Lecture 2

Review of Haskell:

A lightening tour in 50 minutes

Adapted from slides by Graham Hutton
University of Nottingham, UK

Example (1)

Summing the integers from 1 to 10 in Java:

```
total = 0;
for (i = 1; i <= 10; ++i)
    total = total + 1;
```

The method of computation is to execute operations in sequence, in particular variable assignment.

What is a Functional Language

Hard to give a precise definition, but generally speaking:

- Functional programming is a style of programming in which the basic method of computation is functions application.
- A functional language is one that supports and encourages the functional style.

However, higher-order functions and the possibility to treat functions as data are commonly accepted criteria.

Example (2)

Summing the integers from 1 to 10 in Haskell:

```
sum [1..10]
```

The method of computation is function application.
Of course, essentially the same program could be written in Java, but:

- it would be far more verbose
- for most purposes, it wouldn't be a "good" Java program: this is simply not how one programs in Java.

This Lecture

－First steps
－Types in Haskell
－Defining functions
－Recursive functions
－Declaring types

On a Unix system，GHCi can be started from the ghci：

```
isis-1% ghci
    /_\ ハ ハ/__(_)
    / /_\// /_/ / / | |
/ /_\\/ _ / /__| |
\__ハ/ノハ\_\
GHC Interactive, version 6.3, for Haskell 98.
http://www.haskell.org/ghc/
Type :? for help.
```

Loading package base ... linking ... done.
Prelude>

The GHC System（1）

－GHC supports Haskell 98 and many extensions
－GHC is currently the most advanced Haskell system available
－GHC is a compiler，but can also be used interactively：ideal for serious development as well as teaching and prototyping purposes

The GHCi ＞prompt means that the GHCi system is ready to evaluate an expression．
For example：

```
> 2+3*4
14
> reverse [1,2,3]
[3,2,1]
> take 3 [1,2,3,4,5]
[1,2,3]
```


Function Application (1)

In mathematics, function application is denoted using parentheses, and multiplication is often denoted using juxtaposition or space.

```
f(a,b) + c d
```

"Apply the function f to a and b , and add the result to the product of c and d ."

Function Application (3)

Moreover, function application is assumed to have higher priority than all other operators. For example:
f $a+b$
means
(f a) + b
not
f (a + b)

Function Application (2)

In Haskell, function application is denoted using space, and multiplication is denoted using *.
f a b + c*d
Meaning as before, but Haskell syntax.

A type is a name for a collection of related values. For example, in Haskell the basic type

```
        Bool
```

contains the two logical values
False
True

Types in Haskell

- If evaluating an expression e would produce a value of type t, then e has type t, written
e :: t
- Every well-formed expression has a type, which can be automatically calculated at compile time using a process called type inference or type reconstruction.
- However, giving manifest type declarations for at least top-level definitions is good practice.

List Types

A list is sequence of values of the same type:
[False,True,False] :: [Bool]
['a','b','c','d'] :: [Char]
In general:
$[t]$ is the type of lists with elements of type t.

Basic Types

Haskell has a number of basic types, including:

```
Bool Logical values
Char Single characters
String Strings of characters
Int Fixed-precision integers
```

A tuple is a sequence of values of different types:

```
(False,True) : : (Bool,Bool)
    (False,'a', True) : : (Bool,Char, Bool)
In general:
    \(\left(t_{1}, t_{2}, \ldots, t_{n}\right)\) is the type of \(n\)-tuples
    whose \(i^{\text {th }}\) component has type \(t_{i}\) for
    \(i \in[1 \ldots n]\).
```


Function Types (1)

A function is a mapping from values of one type to values of another type:
not : : Bool -> Bool
In general:
$t_{1} \rightarrow t_{2}$ is the type of functions that map values of type t_{1} to values to type t_{2}.

G52CMP: Lecture 2-p.1740
 Polymorphic Functions (1)

A function is called polymorphic ("of many forms") if its type contains one or more type variables.

```
length :: [a] -> Int
```

"For any type a, length takes a list of values of type a and returns an integer."

This is called Parametric Polymorphism.

Function Types (2)

If a function needs more than one argument, pass a tuple, or use currying:
(\&\&) :: Bool -> Bool -> Bool
This really means:

```
(&&) :: Bool -> (Bool -> Bool)
```

Idea: arguments are applied one by one. This allows partial application.

Polymorphic Functions (2)

The type signature of length is really:

```
length :: forall a . [a] -> Int
```

- It is understood that a is a type variable, and thus it ranges over all possible types.
- Haskell 98 does not allow explicit foralls: all type variables are implicitly qualified at the outermost level.
- Haskell extensions allow explicit foralls.

Types are Central in Haskell

Conditional Expressions

Types in Haskell play a much more central role than in many other languages. Two reasons:

- Haskell's type system is very expressive thanks to Parametric Polymorphism:

$$
(++):: \text { [a] -> [a] -> [a] }
$$

- The types say a lot about what functions do because Haskell is a pure language: no side effects (Referential Transparency)

Pattern Matching (1)

Many functions have a particularly clear definition using pattern matching on their arguments:

```
not :: Bool -> Bool
not False = True
not True = False
```

As in most programming languages, functions can be defined using conditional expressions:

```
abs :: Int -> Int
abs n = if n >= 0 then n else -n
```

Alternatively, such a function can be defined using guards:

```
abs :: Int -> Int
abs n | n >= 0 = n
    otherwise = -n
```


Pattern Matching (2)

Case expressions allow pattern matching to be performed wherever an expression is allowed, not just at the top-level of a function definition:

```
not :: Bool -> Bool
not b = case b of
    False -> True
    True -> False
```


List Patterns (1)

Internally, every non-empty list is constructed by repeated use of an operator (:) called "cons" that adds an element to the start of a list, starting from [], the empty list.

Thus:

$$
[1,2,3,4]
$$

means

```
1:(2:(3:(4:[])))
```


Lambda Expressions

A function can be constructed without giving it a name by using a lambda expression:

```
\x -> x + 1
```

"The nameless function that takes a number x and returns the result $\mathrm{x}+1$ "

Note that the ASCII character \backslash stands for λ (lambda).

List patterns (2)

Functions on lists can be defined using $\mathrm{x}: \mathrm{xs}$ patterns:

```
head :: [a] -> a
head (x:_) = x
tail :: [a] -> [a]
tail (_:xs) = xs
```


Lambda expressions can be used to give a formal meaning to functions defined using currying.

For example:

$$
\text { add } x y=x+y
$$

means

```
add = \x -> (\y -> x+y)
```


Recursive Functions (1)

In Haskell, functions can also be defined in terms of themselves. Such functions are called
recursive. For example:

```
factorial 0 = 1
factorial n | n >= 1 = n * factorial (n - 1)
```


Why Is Recursion Useful?

- Some functions, such as factorial, are simpler to define in terms of other functions.
- As we shall see, however, many functions can naturally be defined in terms of themselves.
- Properties of functions defined using recursion can be proved using the simple but powerful mathematical technique of induction.

Recursive Functions (2)

Why does this work? Well, consider:

```
factorial 3
= 3 * factorial 2
= 3 * (2 * factorial 1)
= 3 * (2 * (1 * factorial 0))
= 3 * (2 * (1 * 1))
= 3 * (2 * 1)
= 3 * 2
= 6
```


Recursion on Lists (1)

Recursion is not restricted to numbers, but can also be used to define functions on lists. For example:

```
product :: [Int] -> Int
product [] = 1
product (n:ns) = n * product ns
```


Recursion on Lists (2)

```
product [2,3,4]
= 2 * product [3,4]
= 2 * (3 * product [4])
= 2 * (3 * (4 * product []))
= 2 * (3 * (4 * 1))
= 24
```


Data Declarations (1)

A new type can be declared by specifying its set of values using a data declaration. For example, Bool is in principle defined as:

```
data Bool = False | True
```


Data Declarations (3)

Values of new types can be used in the same ways as those of built in types. E.g., given:

```
data Answer = Yes | No | Unknown
```

we can define:

```
answers :: [Answer]
answers = [Yes,No,Unknown]
flip :: Answer -> Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown
```


Recursive Types (1)

In Haskell, new types can be declared in terms of themselves. That is, types can be recursive:

```
data Nat = Zero | Succ Nat
```

Nat is a new type with constructors
-

- Zero : : Nat
- Succ : : Nat -> Nat

Effectively, we get both a new way form terms and typing rules for these new terms.

Recursion and Recursive Types

Using recursion, it is easy to define functions that convert between values of type Nat and Int:

```
nat2int :: Nat -> Int
nat2int Zero = 0
nat2int (Succ n) = 1 + nat2int n
int2nat :: Int -> Nat
int2nat 0 = Zero
int2nat n | n >= 1 = Succ (int2nat (n - 1))
```


Recursive Types (2)

A value of type Nat is either zero, or of the form Succ n where n : : Nat. That is, Nat contains the following infinite sequence of values:

```
Zero
Succ Zero
Succ (Succ Zero)
```


Parameterized Types

Types can also be parameterized on other types:

```
data List a = Nil | Cons a (List a)
data Tree a = Leaf a
    | Node (Tree a) (Tree a)
```

Resulting constructors:

```
Nil :: List a
Cons :: a -> List a -> List a
Leaf :: a -> Tree a
Node :: Tree a -> Tree a -> Tree a
```

