
G52CMP: Lecture S1
Coursework Support Lecture 1:

Haskell Facilities for Programming
In the Large

Henrik Nilsson

University of Nottingham, UK

G52CMP: Lecture S1 – p.1/39

This Lecture

Some Haskell facilities that are particularly
helpful for large-scale programming:

• The Haskell module system
• Haskell overloading
• Labelled fields (Haskell’s “record” system)

G52CMP: Lecture S1 – p.2/39

Modules in Haskell (1)

• A Haskell program consists of a set of
modules .

• A module contains definitions:
- functions
- types
- type classes

• The top module is called Main:
module Main where

main = putStrLn "Hello World!"
G52CMP: Lecture S1 – p.3/39

Modules in Haskell (2)

By default, only entities defined within a module
are in scope. But a module can import other
modules, bringing their definitions into scope:

module A where
f1 x = x + x
f2 x = x + 3
f3 x = 7

module B where
import A
g x = f1 x * f2 x + f3 x

G52CMP: Lecture S1 – p.4/39

The Prelude

There is one special module called the Prelude .
It is imported implicitly into every module and
contains standard definitions, e.g.:

• Basic types (Int, Bool, tuples, [], Maybe, . . .)
• Basic arithmetic operations (+, *, . . .)
• Basic tuple and list operations (fst, snd,
head, tail, take, map, filter, length,
zip, unzip, . . .)

(It is possible to explicitly exclude (parts of) the
Prelude if necessary.)

G52CMP: Lecture S1 – p.5/39

Qualified Names (1)

The fully qualified name of an entity x defined
in module M is M.x.

g x = A.f1 x * A.f2 x + f3 x

Note! Different from function composition!!!
Always write function composition with spaces:

f . g

The module name space is hierarchical , with
names of the form M1.M2.. . ..Mn. This allows
related modules to be grouped together.

G52CMP: Lecture S1 – p.6/39

Qualified Names (2)

Fully qualified names can be used to resolve
name clashes. Consider:

module A where module C where
f x = 2 * x import A

import B
module B where
f x = 3 * x g x = A.f x + B.f x

Two different functions with the same
unqualified name f in scope in C. Need to write
A.f or B.f to disambiguate.

G52CMP: Lecture S1 – p.7/39

Import Variations

Another way to resolve name clashes is to be
more precise about imports:
import A (f1,f2) Only f1 and f2

import A hiding (f1,f2) Everything but f1
and f2

import qualified A All names from A
imported fully
qualified only.

Can be combined in all possible ways; e.g.:

import qualified A hiding (f1, f2)

G52CMP: Lecture S1 – p.8/39

Export Lists

It is also possible to be precise about what is
exported :

module A (f1, f2) where
...

Various abbreviations possible; e.g.:
• A type constructor along with all its value

constructors
• Everything imported from a specific module

G52CMP: Lecture S1 – p.9/39

Haskell Overloading (1)

What is the type of (==)?

E.g. the following both work:

1 == 2
’a’ == ’b’

I.e., (==) can be used to compare both numbers
and characters.

Maybe (==) :: a -> a -> Bool?

No!!! Cannot work uniformly for arbitrary
types!

G52CMP: Lecture S1 – p.10/39

Haskell Overloading (2)

A function like the identity function

id :: a -> a id x = x

is polymorphic precisely because it works
uniformly for all types: there is no need to
“inspect” the argument.

In contrast, to compare two “things” for equality,
they very much have to be inspected, and an
appropriate method of comparison needs to
be used.

G52CMP: Lecture S1 – p.11/39

Haskell Overloading (3)

Moreover, some types do not in general admit a
decidable equality. E.g. functions (when domain
infinite).

Similar remarks apply to many other types. E.g.:
• We may want to be able to add numbers of

any kind
• But to add properly, we must understand what

we are adding
• Not every type admits addition

G52CMP: Lecture S1 – p.12/39

Haskell Overloading (4)

Idea:
• Introduce the notion of a type class : a set of

types that support certain related operations.
• Constrain those operations to only work for

types belonging to the corresponding class.
• Allow a type to be made an instance of

(added to) a type class by providing
type-specific implementations of the
operations of the class.

G52CMP: Lecture S1 – p.13/39

The Type ClassEq

class Eq a where
(==) :: a -> a -> Bool

(==) is not a function, but a method of the type
class Eq. It’s type signature is:

(==) :: Eq a => a -> a -> Bool

Eq a is a class constraint . It says that that the
equality method works for any type belonging to
the type class Eq.

G52CMP: Lecture S1 – p.14/39

Instances ofEq (1)

Various types can be made instances of a type
class like Eq by providing implementations of the
class methods for the type in question:

instance Eq Int where
x == y = primEqInt x y

instance Eq Char where
x == y = primEqChar x y

G52CMP: Lecture S1 – p.15/39

Instances ofEq (2)

Suppose we have a data type:

data Answer = Yes | No | Unknown

We can make Answer an instance of Eq as follows:

instance Eq Answer where
Yes == Yes = True
No == No = True
Unknown == Unknown = True
_ == _ = False

G52CMP: Lecture S1 – p.16/39

Instances ofEq (3)

Consider:

data Tree a = Leaf a
| Node (Tree a) (Tree a)

Can Tree be made an instance of Eq?

G52CMP: Lecture S1 – p.17/39

Instances ofEq (4)

Yes, for any type a that is already an instance of Eq:
instance (Eq a) => Eq (Tree a) where

Leaf a1 == Leaf a2 = a1 == a2

Node t1l t1r == Node t2l t2r = t1l == t2l

&& t1r == t2r

_ == _ = False

G52CMP: Lecture S1 – p.18/39

Derived Instances

Instance declarations are often obvious and
mechanical. Thus, for certain built-in classes
(notably Eq, Ord, Show), Haskell provides a way
to automatically derive instances, as long as

• the data type is sufficiently simple
• we are happy with the standard definitions

Thus, we can do:

data Tree a = Leaf a
| Node (Tree a) (Tree a)
deriving Eq

G52CMP: Lecture S1 – p.19/39

Class Hierarchy

Type classes form a hierarchy. E.g.:

class Eq a => Ord a where
(<=) :: a -> a -> Bool
...

Eq is a superclass of Ord; i.e., any type in Ord
must also be in Eq.

G52CMP: Lecture S1 – p.20/39

Haskell vs. OO Overloading (1)

A method, or overloaded function, may thus be
understood as a family of functions where the
right one is chosen depending on the types.

A bit like OO languages like Java. But the
underlying mechanism is quite different and
much more general. Consider read:

read :: (Read a) => String -> a

Note: overloaded on the result type! A method
that converts from a string to any other type in
class Read!

G52CMP: Lecture S1 – p.21/39

Haskell vs. OO Overloading (2)

> let xs = [1,2,3] :: [Int]
> let ys = [1,2,3] :: [Double]
> xs
[1,2,3]
> ys
[1.0,2.0,3.0]
> (read "42" : xs)
[42,1,2,3]
> (read "42" : ys)
[42.0,1.0,2.0,3.0]
> read "’a’" :: Char
’a’

G52CMP: Lecture S1 – p.22/39

Implementation (1)

The class constraints represent extra implicit
arguments that are filled in by the compiler.
These arguments are (roughly) the functions to
use.

Thus, internally (==) is a higher order function
with three arguments:

(==) eqF x y = eqF x y

G52CMP: Lecture S1 – p.23/39

Implementation (2)

An expression like

1 == 2

is essentially translated into

(==) primEqInt 1 2

G52CMP: Lecture S1 – p.24/39

Some Standard Haskell Classes (1)

class Eq a where

(==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where

compare :: a -> a -> Ordering

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a

class Show a where

show :: a -> String

G52CMP: Lecture S1 – p.25/39

Some Standard Haskell Classes (2)

class (Eq a, Show a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

Quiz: What is the type of a numeric literal like 42?
42 :: Int? Why?

G52CMP: Lecture S1 – p.26/39

Labelled Fields (1)

Suppose we need to represent data about
people:

• Name
• Age
• Phone number
• Post code

One possibility: use a tuple:

type Person = (String, Int, String, String)

henrik = ("Henrik", 25, "8466506", "NG92YZ")

G52CMP: Lecture S1 – p.27/39

Labelled Fields (2)

Problems? Well, the type does not say much
about the purpose of the fields! Easy to make
mistakes; e.g.:

getPhoneNumber :: Person -> String

getPhoneNumber (_, _, _, pn) = pn

or

henrik = ("Henrik", 25, "NG92YZ", "8466506")

G52CMP: Lecture S1 – p.28/39

Labelled Fields (3)

Can we do better? Yes, we can introduce a new
type with named fields :
data Person = Person {

name :: String,

age :: Int,

phone :: String,

postcode :: String

}

deriving (Eq, Show)

G52CMP: Lecture S1 – p.29/39

Labelled Fields (4)
Labelled fields are just “syntactic sugar”: the
defined type really is this:

data Person = Person String Int String String

and can be used as normal.

However, additionally, the field names can be
used to facilitate:

• Construction
• Update
• Selection
• Pattern matching

G52CMP: Lecture S1 – p.30/39

Construction

We can construct data without having to
remember the field order:

henrik = Person {
age = 25,
name = "Henrik",
postcode = "NG92YZ",
phone = "8466506"

}

G52CMP: Lecture S1 – p.31/39

Update (1)

Fields can be “updated”, creating new values
from old:

> henrik { phone = "1234567" }
Person {name = "Henrik", age = 25,
phone = "1234567",
postcode = "NG92YZ"}

Note: This is a functional “update”! The old
value is left intact.

G52CMP: Lecture S1 – p.32/39

Update (2)

How does “update” work?

henrik { phone = "1234567" }

gets translated to something like this:

f (Person a1 a2 _ a4) =
Person a1 a2 "1234567" a4

f henrik

G52CMP: Lecture S1 – p.33/39

Selection

We automatically get a selector function for
each field:

name :: Person -> String
age :: Person -> Int
phone :: Person -> String
postcode :: Person -> String

For example:

> name henrik
"Henrik"
> phone henrik
"8466506"

G52CMP: Lecture S1 – p.34/39

Pattern matching

Field names can be used in pattern matching,
allowing us to forget about the field order and
pick only fields of interest.

phoneAge (Person {phone = p, age = a}) =

p ++ ": " ++ show a

This facilitates adding new fields to a type as
most of the pattern matching code usually can be
left unchanged.

G52CMP: Lecture S1 – p.35/39

Multiple Value Constructors (1)

data Being = Person {

name :: String,

age :: Int,

phone :: String,

postcode :: String

}

| Alien {

name :: String,

age :: Int,

homeworld :: String

}

deriving (Eq, Show)
G52CMP: Lecture S1 – p.36/39

Multiple Value Constructors (2)

It is OK to have the same field labels for different
constructors as long as their types agree.

G52CMP: Lecture S1 – p.37/39

Distinct Field Labels for Distinct Types

It is not possible to have the same field names
for different types! The following does not work:

data X = MkX { field1 :: Int }

data Y = MkY { field1 :: Int, field2 :: Int }

One work-around: use a prefix convention:

data X = MkX { xField1 :: Int }

data Y = MkY { yField1 :: Int, yField2:: Int }

G52CMP: Lecture S1 – p.38/39

Advantages of Labelled Fields

• Makes intent clearer.
• Allows construction and pattern matching

without having to remember the field order.
• Provides a convenient update notation.
• Allows to focus on specific fields of interest

when pattern matching.
• Addition or removal of fields only affects

function definitions where these fields really
are used.

G52CMP: Lecture S1 – p.39/39

	This Lecture
	Modules in Haskell (1)
	Modules in Haskell (2)
	The Prelude
	Qualified Names (1)
	Qualified Names (2)
	Import Variations
	Export Lists
	Haskell Overloading (1)
	Haskell Overloading (2)
	Haskell Overloading (3)
	Haskell Overloading (4)
	The Type Class 	exttt {Eq}
	Instances of 	exttt {Eq} (1)
	Instances of 	exttt {Eq} (2)
	Instances of 	exttt {Eq} (3)
	Instances of 	exttt {Eq} (4)
	Derived Instances
	Class Hierarchy
	Haskell vs. OO Overloading (1)
	Haskell vs. OO Overloading (2)
	Implementation (1)
	Implementation (2)
	Some Standard Haskell Classes (1)
	Some Standard Haskell Classes (2)
	Labelled Fields (1)
	Labelled Fields (2)
	Labelled Fields (3)
	Labelled Fields (4)
	Construction
	Update (1)
	Update (2)
	Selection
	Pattern matching
	Multiple Value Constructors (1)
	Multiple Value Constructors (2)
	Distinct Field Labels for Distinct Types
	Advantages of Labelled Fields

