G53CMP: Recap of Basic Formal
 Language Notions

Henrik Nilsson

University of Nottingham, UK

- Formal Languages
- Context-Free Grammars
- Ambiguous Grammars
- Eliminating Ambiguity
- Dangling else
- Operator associativity
- Operator precedence

About These Slides

The following slides give a brief recap on some central notions from the theory of formal languages, along with illustrative examples of specific relevance to G53CMP (including the coursework). This is material that has been covered in G52LAC and should be familiar to students taking G53CMP. This material will thus not be covered in detail in the G53CMP lectures, but is offered here for your convenience if you need to refresh these concepts. You may want to go back the G52LAC lecture notes if you need even more details.

Languages (1)

- A symbol is a basic indivisible entity. Concrete examples of symbols are letters and digits.
- A string or word is a finite sequence of juxtapositioned symbols.
For example: a, b, and c are symbols and $a b c b$ is a string.
- An alphabet is a finite set of symbols. For example: $\{a, b, c\}, \emptyset$.

Languages (2)

- ϵ denotes the word of length 0 , the empty word.
- A language (over alphabet Σ) is a set of words (over alphabet Σ).
For example: $\Sigma=\{a\}$; one possible language is $L=\{\epsilon, a, a a, a a a\}$.
- Σ^{*} denotes the set of all words over an alphabet Σ, including ϵ.

- Concatenation of words is denoted by juxtaposition. For example:
Concatenation of $a b$ and $b a$ yields $a b b a$.
- Concatenation is associative and has unit ϵ :

$$
\begin{array}{r}
u(v w)=(u v) w \\
\epsilon u=u=u \epsilon
\end{array}
$$

where u, v, w are words.

Languages: Examples

```
alphabet \(\quad \Sigma=\{a, b\}\)
words
languages
\(\emptyset,\{\epsilon\},\{a\},\{b\},\{a, a a\}\),
\(\{\epsilon, a, a a, a a a\}\),
\(\left\{a^{n} \mid n \geq 0\right\}\),
\(\left\{a^{n} b^{n} \mid n \geq 0, n\right.\) even \(\}\)
```


Concatenation of words is extended to languages by:

$$
M N=\{u v \mid u \in M \wedge v \in N\}
$$

Example:

$$
\begin{aligned}
M & =\{\epsilon, a, a a\} \\
N & =\{b, c\} \\
M N & =\{u v \mid u \in\{\epsilon, a, a a\} \wedge v \in\{b, c\}\} \\
& =\{\epsilon b, \epsilon c, a b, a c, a a b, a a c\} \\
& =\{b, c, a b, a c, a a b, a a c\}
\end{aligned}
$$

Concatenation of Languages (2)

- Concatenation of languages is associative:

$$
L(M N)=(L M) N
$$

- Concatenation of languages has unit $\{\epsilon\}$:

$$
L\{\epsilon\}=L=\{\epsilon\} L
$$

- Concatenation distributes through set union:

$$
\begin{aligned}
L(M \cup N) & =L M \cup L N \\
(L \cup M) N & =L N \cup M N
\end{aligned}
$$

Context-Free Grammars (2)

Thus, describing a programming language by a "reasonable" CFG

- allows context-free constraints to be expressed
- imparts a hierarchical structure to the words in the language
- allows simple and efficient parsing:
- determining if a word belongs to the language
- determining its phrase structure if so.

Context-Free Grammar: Example

$$
G=(\{S, A\},\{a, b\}, P, S)
$$

where P consists of the productions

$$
\begin{aligned}
& S \rightarrow \epsilon \\
& S \rightarrow a A \\
& A \rightarrow b S
\end{aligned}
$$

Context-Free Grammars: Notation

- Productions with the same LHS are usually grouped together. For example, the productions for S from the previous example:

$$
S \rightarrow \epsilon \mid a A
$$

This is (roughly) what is known as Backus-Naur Form.

- Another common way of writing productions is

$$
A::=\alpha
$$

The Directly Derives Relation (2)

When it is clear which grammar G is involved, we use \Rightarrow instead of $\underset{G}{\Rightarrow}$.
Example: Given the grammar

$$
\begin{aligned}
& S \rightarrow \epsilon \mid a A \\
& A \rightarrow b S
\end{aligned}
$$

we have

$$
\begin{aligned}
S & \Rightarrow \epsilon & a A & \Rightarrow a b S \\
S & \Rightarrow a A & \text { SaAaa } & \Rightarrow \text { SabSaa }
\end{aligned}
$$

The Derives Relation (1)

The relation $\underset{G}{\stackrel{*}{G}}$, read "derives in grammar $G^{\prime \prime}$, is the reflexive, transitive closure of $\underset{G}{\Rightarrow}$.
That is, $\underset{G}{*}$ is the least relation on strings over
$N \cup T$ such that:

- $\alpha \underset{G}{*} \beta$ if $\alpha \underset{G}{\Rightarrow} \beta$
- $\alpha \stackrel{*}{\Rightarrow} \alpha \quad$ (reflexive)
- $\alpha \underset{G}{\stackrel{*}{\Rightarrow}} \beta$ if $\alpha \underset{G}{\stackrel{*}{\Rightarrow}} \gamma \wedge \gamma \underset{G}{*} \beta \quad$ (transitive)

Language Generated by a Grammar

The language generated by a context-free grammar

$$
G=(N, T, P, S)
$$

denoted $L(G)$, is defined as follows:

$$
L(G)=\left\{w \mid w \in T^{*} \wedge S \underset{G}{\stackrel{*}{\Rightarrow}} w\right\}
$$

A language L is a Context-Free Language (CFL) iff $L=L(G)$ for some CFG G.

A string $\alpha \in(N \cup T)^{*}$ is a sentential form iff $S \stackrel{*}{\Rightarrow} \alpha$.

The Derives Relation (2)

Again, we use $\stackrel{*}{\Rightarrow}$ instead of $\underset{G}{\stackrel{*}{\Rightarrow}}$ when G is obvious.
Example: Given the grammar

$$
\begin{aligned}
& S \rightarrow \epsilon \mid a A \\
& A \rightarrow b S
\end{aligned}
$$

we have

$$
\begin{array}{rlrl}
S & \stackrel{*}{\Rightarrow} \epsilon & S & \stackrel{*}{\Rightarrow} a b S \\
S & \stackrel{*}{\Rightarrow} a A & S & \stackrel{*}{\Rightarrow} a b a b S \\
a A & \stackrel{*}{\Rightarrow} a b S & S & \stackrel{*}{\Rightarrow} a b a b
\end{array}
$$

Language Generation: Example

Given the grammar
$G=(N=\{S, A\}, T=\{a, b\}, P, S)$ where P are the productions

$$
\begin{aligned}
& S \rightarrow \epsilon \mid a A \\
& A \rightarrow b S
\end{aligned}
$$

we have

$$
\begin{aligned}
L(G) & =\left\{(a b)^{i} \mid i \geq 0\right\} \\
& =\{\epsilon, a b, a b a b, a b a b a b, a b a b a b a b, \ldots\}
\end{aligned}
$$

Equivalence of Grammars

Two grammars G_{1} and G_{2} are equivalent iff $L\left(G_{1}\right)=L\left(G_{2}\right)$.
Example:

$$
\begin{aligned}
G_{1}: \begin{aligned}
S & \rightarrow \epsilon \mid A \\
A & \rightarrow a \mid a A
\end{aligned} \quad G_{2}: \begin{aligned}
& S \rightarrow A \\
& A \rightarrow \epsilon \mid A a \\
& L\left(G_{1}\right)=\{a\}^{*}=L\left(G_{2}\right)
\end{aligned} &
\end{aligned}
$$

Note: the equivalence of CFGs is in general undecidable.

Derivation tree for the string $a b a b \in L(G)$:

$$
\text { G: } \begin{aligned}
& S \rightarrow \epsilon \mid a A \\
& A \rightarrow b S
\end{aligned}
$$

Derivation Tree

A tree is a derivation or parse tree for CFG

$G=(N, T, P, S)$ if:

- every vertex has a label from $N \cup T \cup\{\epsilon\}$
- the label of the root is S
- labels of interior vertices belong to N
- if vertex n has label A and vertices $n_{1}, n_{2}, \ldots, n_{k}$ are the children of n, from left to right, with labels $X_{1}, X_{2}, \ldots, X_{k}$, then $A \rightarrow X_{1} X_{2} \cdots X_{k}$ is a production in P
- if a vertex n has label ϵ, then n is a leaf and the only child of its parent.

Derivations and Derivation Trees

Given a derivation tree for a grammar G :

- The string of leaf labels read from left to right is the yield of the tree.
- The yield is a sentential form of G.

The derives relation and derivation trees are related as follows:

A string α is the yield of some derivation tree for a grammar G iff $S \underset{G}{\stackrel{*}{\Rightarrow}} \alpha$.

Regular Grammars

- Lexical syntax is usually defined through Regular Languages.
- The regular languages are a proper subset of the context-free languages.
- Context-free grammars can thus be used to describe regular languages.
- If a grammar G is left-linear or right-linear, then G is a regular grammar and $L(G)$ is a regular language.
- Regular languages are easy to recognize (DFA).

A CFG $G=(N, T, P, S)$ is left-linear if all its productions are of the forms

$$
\begin{aligned}
& A \rightarrow B w \\
& A \rightarrow w
\end{aligned}
$$

where $A, B \in N$ and $w \in T^{*}$.
Example: The regular language $0(10)^{*}$ is generated by the left-linear grammar

$$
S \rightarrow S 10 \mid 0
$$

Right-linear Grammar

A CFG $G=(N, T, P, S)$ is right-linear if all its productions are of the forms

$$
\begin{aligned}
& A \rightarrow w B \\
& A \rightarrow w
\end{aligned}
$$

where $A, B \in N$ and $w \in T^{*}$.
Example: The regular language $0(10)^{*}$ is generated by the right-linear grammar

$$
\begin{aligned}
S & \rightarrow 0 A \\
A & \rightarrow 10 A \mid \epsilon
\end{aligned}
$$

Leftmost and Rightmost Derivations

- A derivation is leftmost if productions are always applied to the leftmost nonterminal at each step in a derivation.
- A derivation is rightmost if productions are always applied to the rightmost nonterminal at each step in a derivation.

Leftmost derivation:

$$
G: \begin{aligned}
& S \rightarrow A B \mid B A \\
& A \rightarrow a \\
& B \rightarrow A b
\end{aligned}
$$

$$
\begin{gathered}
S \underset{l m}{\Rightarrow} B A \underset{l m}{\Rightarrow} A b A \\
\underset{l m}{\Rightarrow} a b A \underset{l m}{\Rightarrow} a b a
\end{gathered}
$$

Ambiguous Grammars (1)

A CFG G is ambiguous if some word in $L(G)$ has more than one derivation tree.

A derivation tree determines a unique leftmost and a unique rightmost derivation.

Thus, equivalently: A CFG G is ambiguous if some word in $L(G)$ has

- more than one leftmost derivation, or
- more than one rightmost derivation.

- Most CFLs are not inherently ambiguous; i.e., an ambiguous CFG G for a language L can often be transformed into an equivalent but unambiguous grammar G^{\prime}.
- The ambiguity of a CFG is in general undecidable.

Ambiguous Grammars (2)

- A CFL for which every CFG is ambiguous is inherently ambiguous.
- The following language L is inherently ambiguous:

$$
\begin{aligned}
L= & \left\{a^{n} b^{n} c^{m} d^{m} \mid n \geq 1, m \geq 1\right\} \\
& \cup\left\{a^{n} b^{m} c^{m} d^{n} \mid n \geq 1, m \geq 1\right\}
\end{aligned}
$$

- Reason: All but a finite number of strings of the form $a^{n} b^{n} c^{n} d^{n}$ must be generated in two different ways. (The proof is not easy!)

G53CMP: Reaza of Basic Formal Language Notions - P 305
 Eliminating Ambiguity: Dangling-Else

Consider the following "dangling-else" grammar:

```
Stmt }->\mathrm{ if Expr then Stmt
    | if Expr then Stmt else Stmt
    other
```

and the following program fragment:

```
if expr }\mp@subsup{\mp@code{1}}{1}{}\mathrm{ then if expr then stmt1 else stmt 
```

Two possible parse trees!
Hence the grammar is ambiguous!

Elim. Ambiguity: Dangling-Else (2)

Tree 1:

Tree 2:

Elim. Ambiguity: Dangling-Else (4)

Preferred interpretation:
"Match each el se with the closest
previous unmatched then"
That is, Tree 1 is preferred.
Q: How can that be achieved?
A: Transform the grammar into an equivalent but unambiguous grammar.

Exercise: convince yourself that the following grammar indeed is equivalent!

Elim. Ambiguity: Dangling-Else (3)

Note that the distinction is important, as the two trees suggest different semantics.

For example, suppose expr r_{1} evaluates to true, and expr_{2} evaluates to false. Which, if any, of ${s t m t_{1}}$ and $s t m t_{2}$ gets executed?

Elim. Ambiguity: Dangling-Else (5)

Idea: a statement appearing between a then and an el se must be a "matched" statement.

Stmt	\rightarrow	MatchedStmt
	\|	UnmatchedStmt
MatchedStmt	\rightarrow	if Expr then MatchedStmt
		else MatchedStmt
	\|	other
UnmatchedStmt	\rightarrow	if Expr then Stmt
	1	if Expr then MatchedStmt
		else UnmatchedStmt

Elim. Ambiguity: Dangling-Else (6)

Compare with the grammar for if-statements given in section 14.9 of the Java Language Specification, Third Edition:
http://java.sun.com/docs/books/jls
It uses the grammar structure of the previous slide to solve the dangling-else problem, even if the names of the non-terminals are somewhat different.
Elim. Ambiguity: Associativity (2)

The following grammar achieves that:

$$
\begin{array}{rll}
\text { Expr } & \rightarrow & \text { integer } \\
& \text { Expr }+ \text { Expr } \\
& \text { Expr }- \text { Expr } \\
& (\text { Expr })
\end{array}
$$

But ambiguous! Parse trees for $1+2+3$:

(Slightly simplified: 1, 2, etc. considered terminals.)

Eliminating Ambiguity: Associativity

It is standard practice to leave out unnecessary parentheses when writing down mathematical expressions:

$$
\begin{array}{ccc}
1+2+3 & \text { instead of } & (1+2)+3 \\
47-3-2 & \text { instead of } & (47-3)-2
\end{array}
$$

We would like to do the same when writing programs!

G53CMP: Recap of Basic Formal Language Notions - - 3852
 Elim. Ambiguity: Associativity (3)

If we make the choice of letting the parse tree structure impart the bracketing structure, we see that the two parse trees correspond to

```
- (1 + 2) + 3
- 1 + (2 + 3)
```

Similarly, $47-3-2$ can be parsed in two ways:

- (47-3) - 2
- 47 - (3-2)

Clearly the choice affects the of the code!

Elim. Ambiguity: Associativity (4)

- The choice might not seem important for + since, mathematically, + is associative:

$$
(1+2)+3=1+(2+3)=6
$$

But the computer implementation of + might not be so well-behaved!

- Floating-point addition is not associative!
- Integer addition is not associative if e.g. overflow is trapped.

Elim. Ambiguity: Associativity (6)

To disambiguate, we want to make both + and -left-associative.

That can be achieved by making the relevant grammar productions left-recursive:

Expr	\rightarrow	PrimExpr
	\mid	Expr + PrimExpr
	\mid	Expr - PrimExpr
PrimExpr	\rightarrow	integer
	\mid	$($ Expr $)$

- The choice clearly matters for - :

$$
(47-3)-2 \neq 47-(3-2)
$$

Elim. Ambiguity: Associativity (8)

Some operators are usually considered right-associative.
Consider an arithmetic exponentiation operator ${ }^{\wedge}$. We would like

3 ^ 2 ^ 3
to be parsed as
3 ^ (2 ~3)
so that the meaning is $3^{2^{3}}=3^{\left(2^{3}\right)}=6561$ rather than $\left(3^{2}\right)^{3}=729$.

Eliminating Ambiguity: Precedence (1)

We would also like to be able to rely on standard rules for operator precedence to make it clear what is meant.

For example, it should be possible to write

$$
1+2 \star 3
$$

instead of having to write out the fully parenthesized version
$1+(2 * 3)$

Elim. Ambiguity: Associativity (9)

An operator can be made right-associative through right-recursive grammar productions:

```
ExpExpr }->\mathrm{ PrimExpr
    | PrimExpr ^ ExpExpr
PrimExpr }->\mathrm{ integer
    | (Expr)
```


Eliminating Ambiguity: Precedence (2)

We chose to make * left-associative (standard).
The following grammar accepts expressions like
1 + 2 * 3:
$\begin{array}{lcl}\text { Expr } & \rightarrow & \text { PrimExpr } \\ & \mid & \text { Expr }+ \text { PrimExpr } \\ & \mid & \text { Expr * PrimExpr } \\ \text { PrimExpr } & \rightarrow & \text { integer } \\ & \mid & \text { (Expr })\end{array}$

Eliminating Ambiguity: Precedence (3)

Eliminating Ambiguity: Precedence (4)

However, the meaning is not what we want!

$$
1+2 * 3 \text { gets parsed as }(1+2) * 3:
$$

Eliminating Ambiguity: Precedence (5)

Now $1+2$ * 3 gets parsed as $1+(2 * 3)$:

We rewrite the grammar so that expressions involving high-precedence operators only can occur as subexpressions of expressions involving low-precedence operators.

Expr	\rightarrow	MulExpr
	\mid	Expr + MulExpr
MulExpr	\rightarrow	PrimExpr
	\mid	MulExpr * PrimExpr
PrimExpr	\rightarrow	integer
	\mid	(Expr)

Other ways of dealing with ambiguity

Transforming a grammar to eliminate ambiguity is not always desirable:

- Can be quite hard to do correctly.
- The transformed grammar might be less easy to understand than the original.
Parser generator tools often provide alternative disambiguation mechanisms:
- Meta-rules that favours the longest RHS among a group of conflicting productions.
- Explicit declaration of operator precedence.

