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About These Slides

The following slides give a brief recap on some
central notions from the theory of formal
languages, along with illustrative examples of
specific relevance to G53CMP (including the
coursework). This is material that has been
covered in G52LAC and should be familiar to
students taking G53CMP. This material will thus
not be covered in detail in the G53CMP lectures,
but is offered here for your convenience if you
need to refresh these concepts. You may want to
go back the G52LAC lecture notes if you need
even more details.
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Content

• Formal Languages

• Context-Free Grammars

• Ambiguous Grammars

• Eliminating Ambiguity

- Dangling else

- Operator associativity

- Operator precedence
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Languages (1)

• A symbol is a basic indivisible entity.
Concrete examples of symbols are letters and
digits.
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Languages (1)

• A symbol is a basic indivisible entity.
Concrete examples of symbols are letters and
digits.

• A string or word is a finite sequence of
juxtapositioned symbols.
For example: a, b, and c are symbols and abcb
is a string.
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Languages (1)

• A symbol is a basic indivisible entity.
Concrete examples of symbols are letters and
digits.

• A string or word is a finite sequence of
juxtapositioned symbols.
For example: a, b, and c are symbols and abcb
is a string.

• An alphabet is a finite set of symbols.
For example: {a, b, c}, ∅.
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Languages (2)

• ǫ denotes the word of length 0, the empty
word.
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Languages (2)

• ǫ denotes the word of length 0, the empty
word.

• A language (over alphabet Σ) is a set of
words (over alphabet Σ).
For example: Σ = {a}; one possible language
is L = {ǫ, a, aa, aaa}.
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Languages (2)

• ǫ denotes the word of length 0, the empty
word.

• A language (over alphabet Σ) is a set of
words (over alphabet Σ).
For example: Σ = {a}; one possible language
is L = {ǫ, a, aa, aaa}.

• Σ∗ denotes the set of all words over an
alphabet Σ, including ǫ.
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Languages: Examples

alphabet Σ = {a, b}

words ?
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .
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alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},

{an|n ≥ 0},
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},

{an|n ≥ 0},

{anbn|n ≥ 0, n even}
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Concatenation of Words

• Concatenation of words is denoted by
juxtaposition. For example:
Concatenation of ab and ba yields abba.
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Concatenation of Words

• Concatenation of words is denoted by
juxtaposition. For example:
Concatenation of ab and ba yields abba.

• Concatenation is associative and has unit ǫ:

u(vw) = (uv)w

ǫu = u = uǫ

where u, v, w are words.
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Concatenation of Languages (1)

Concatenation of words is extended to
languages by:

MN = {uv |u ∈ M ∧ v ∈ N}

Example:

M = {ǫ, a, aa}

N = {b, c}

MN = {uv |u ∈ {ǫ, a, aa} ∧ v ∈ {b, c}}

= {ǫb, ǫc, ab, ac, aab, aac}

= {b, c, ab, ac, aab, aac}
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Concatenation of Languages (2)

• Concatenation of languages is associative:

L(MN) = (LM)N

• Concatenation of languages has unit {ǫ}:

L{ǫ} = L = {ǫ}L

• Concatenation distributes through set union:

L(M ∪N) = LM ∪ LN

(L ∪M)N = LN ∪MN
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Context-Free Grammars (1)

A Context-Free Grammar (CFG) is a way of
formally describing Context-Free Languages
(CFL):
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Context-Free Grammars (1)

A Context-Free Grammar (CFG) is a way of
formally describing Context-Free Languages
(CFL):

• The CFLs captures ideas common in
programming languages such as

- nested structure

- balanced parentheses

- matching keywords like begin and end.
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Context-Free Grammars (1)

A Context-Free Grammar (CFG) is a way of
formally describing Context-Free Languages
(CFL):

• The CFLs captures ideas common in
programming languages such as

- nested structure

- balanced parentheses

- matching keywords like begin and end.

• Most “reasonable” CFLs can be recognised
by a fairly simple machine: a deterministic
pushdown automaton.
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Context-Free Grammars (2)

Thus, describing a programming language by a
“reasonable” CFG
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Context-Free Grammars (2)

Thus, describing a programming language by a
“reasonable” CFG

• allows context-free constraints to be expressed
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Context-Free Grammars (2)

Thus, describing a programming language by a
“reasonable” CFG

• allows context-free constraints to be expressed

• imparts a hierarchical structure to the words
in the language
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Context-Free Grammars (2)

Thus, describing a programming language by a
“reasonable” CFG

• allows context-free constraints to be expressed

• imparts a hierarchical structure to the words
in the language

• allows simple and efficient parsing:

- determining if a word belongs to the
language

- determining its phrase structure if so.
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Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where
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Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals
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Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals

• T is a finite set of terminals (the alphabet of
the language being described)
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Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals

• T is a finite set of terminals (the alphabet of
the language being described)

• N ∩ T = ∅ (N and T are disjoint)
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Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals

• T is a finite set of terminals (the alphabet of
the language being described)

• N ∩ T = ∅ (N and T are disjoint)

• S, the start symbol, is a distinguished
element of N
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Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals

• T is a finite set of terminals (the alphabet of
the language being described)

• N ∩ T = ∅ (N and T are disjoint)

• S, the start symbol, is a distinguished
element of N

• P is a finite set of productions, written A → α,
where A ∈ N and α ∈ (N ∪ T )∗
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Context-Free Grammar: Example

G = ({S,A}, {a, b}, P, S)

where P consists of the productions

S → ǫ

S → aA

A → bS
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Context-Free Grammars: Notation

• Productions with the same LHS are usually
grouped together. For example, the
productions for S from the previous example:

S → ǫ | aA

This is (roughly) what is known as
Backus-Naur Form.
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Context-Free Grammars: Notation

• Productions with the same LHS are usually
grouped together. For example, the
productions for S from the previous example:

S → ǫ | aA

This is (roughly) what is known as
Backus-Naur Form.

• Another common way of writing productions is

A ::= α
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The Directly Derives Relation (1)

To formally define the language generated by

G = (N,T, P, S)

we first define a binary relation ⇒
G

on strings over

N ∪ T , read “directly derives in grammar G”,
being the least relation such that

αAγ ⇒
G

αβγ

whenever A → β is a production in G.
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The Directly Derives Relation (1)

To formally define the language generated by

G = (N,T, P, S)

we first define a binary relation ⇒
G

on strings over

N ∪ T , read “directly derives in grammar G”,
being the least relation such that

αAγ ⇒
G

αβγ

whenever A → β is a production in G.
Note: a production can be applied regardless of

context, hence context-free.
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The Directly Derives Relation (2)

When it is clear which grammar G is involved, we
use ⇒ instead of ⇒

G

.

Example: Given the grammar

S → ǫ | aA

A → bS

we have

S ⇒ ǫ

S ⇒ aA

aA ⇒ abS

SaAaa ⇒ SabSaa
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The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:
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The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

• α
∗
⇒
G

β if α ⇒
G

β
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The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

• α
∗
⇒
G

β if α ⇒
G

β

• α
∗
⇒
G

α (reflexive)
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The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

• α
∗
⇒
G

β if α ⇒
G

β

• α
∗
⇒
G

α (reflexive)

• α
∗
⇒
G

β if α
∗
⇒
G

γ ∧ γ
∗
⇒
G

β (transitive)
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The Derives Relation (2)

Again, we use
∗
⇒ instead of

∗
⇒
G

when G is obvious.

Example: Given the grammar

S → ǫ | aA

A → bS

we have

S
∗
⇒ ǫ

S
∗
⇒ aA

aA
∗
⇒ abS

S
∗
⇒ abS

S
∗
⇒ ababS

S
∗
⇒ abab
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Language Generated by a Grammar

The language generated by a context-free
grammar

G = (N,T, P, S)

denoted L(G), is defined as follows:

L(G) = {w | w ∈ T ∗ ∧ S
∗
⇒
G

w}

A language L is a Context-Free Language
(CFL) iff L = L(G) for some CFG G.

A string α ∈ (N ∪ T )∗ is a sentential form iff

S
∗
⇒ α.
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Language Generation: Example

Given the grammar
G = (N = {S,A}, T = {a, b}, P, S) where P are
the productions

S → ǫ | aA

A → bS

we have

L(G) = {(ab)i | i ≥ 0}

= {ǫ, ab, abab, ababab, abababab, . . .}
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Equivalence of Grammars

Two grammars G1 and G2 are equivalent iff
L(G1) = L(G2).

Example:

G1:
S → ǫ | A

A → a | aA
G2:

S → A

A → ǫ | Aa

L(G1) = {a}∗ = L(G2)

G53CMP: Recap of Basic Formal Language Notions – p.21/52



Equivalence of Grammars

Two grammars G1 and G2 are equivalent iff
L(G1) = L(G2).

Example:

G1:
S → ǫ | A

A → a | aA
G2:

S → A

A → ǫ | Aa

L(G1) = {a}∗ = L(G2)

Note: the equivalence of CFGs is in general
undecidable.
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Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:
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Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

• every vertex has a label from N ∪ T ∪ {ǫ}
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Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

• every vertex has a label from N ∪ T ∪ {ǫ}
• the label of the root is S
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Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

• every vertex has a label from N ∪ T ∪ {ǫ}
• the label of the root is S

• labels of interior vertices belong to N
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Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

• every vertex has a label from N ∪ T ∪ {ǫ}
• the label of the root is S

• labels of interior vertices belong to N

• if vertex n has label A and vertices n1, n2, . . . , nk

are the children of n, from left to right, with
labels X1, X2, . . . , Xk, then A → X1X2 · · ·Xk

is a production in P
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Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

• every vertex has a label from N ∪ T ∪ {ǫ}
• the label of the root is S

• labels of interior vertices belong to N

• if vertex n has label A and vertices n1, n2, . . . , nk

are the children of n, from left to right, with
labels X1, X2, . . . , Xk, then A → X1X2 · · ·Xk

is a production in P

• if a vertex n has label ǫ, then n is a leaf and
the only child of its parent.
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Derivation Tree: Example

Derivation tree for the string abab ∈ L(G):

G: S → ǫ | aA

A → bS

S

a A

Sb

a A

Sb

ε
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Derivations and Derivation Trees

Given a derivation tree for a grammar G:

• The string of leaf labels read from left to right
is the yield of the tree.

• The yield is a sentential form of G.
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Derivations and Derivation Trees

Given a derivation tree for a grammar G:

• The string of leaf labels read from left to right
is the yield of the tree.

• The yield is a sentential form of G.

The derives relation and derivation trees are
related as follows:

A string α is the yield of some derivation

tree for a grammar G iff S
∗
⇒
G

α.
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Regular Grammars

• Lexical syntax is usually defined through
Regular Languages.

G53CMP: Recap of Basic Formal Language Notions – p.25/52



Regular Grammars

• Lexical syntax is usually defined through
Regular Languages.

• The regular languages are a proper subset of
the context-free languages.
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Regular Grammars

• Lexical syntax is usually defined through
Regular Languages.

• The regular languages are a proper subset of
the context-free languages.

• Context-free grammars can thus be used to
describe regular languages.
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Regular Grammars

• Lexical syntax is usually defined through
Regular Languages.

• The regular languages are a proper subset of
the context-free languages.

• Context-free grammars can thus be used to
describe regular languages.

• If a grammar G is left-linear or right-linear,
then G is a regular grammar and L(G) is a
regular language.
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Regular Grammars

• Lexical syntax is usually defined through
Regular Languages.

• The regular languages are a proper subset of
the context-free languages.

• Context-free grammars can thus be used to
describe regular languages.

• If a grammar G is left-linear or right-linear,
then G is a regular grammar and L(G) is a
regular language.

• Regular languages are easy to recognize (DFA).
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Right-linear Grammar

A CFG G = (N,T, P, S) is right-linear if all its
productions are of the forms

A → wB

A → w

where A,B ∈ N and w ∈ T ∗.

Example: The regular language 0(10)∗ is
generated by the right-linear grammar

S → 0A

A → 10A | ǫ

G53CMP: Recap of Basic Formal Language Notions – p.26/52



Left-linear Grammar

A CFG G = (N,T, P, S) is left-linear if all its
productions are of the forms

A → Bw

A → w

where A,B ∈ N and w ∈ T ∗.

Example: The regular language 0(10)∗ is
generated by the left-linear grammar

S → S10 | 0
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Leftmost and Rightmost Derivations

• A derivation is leftmost if productions are
always applied to the leftmost nonterminal at
each step in a derivation.

• A derivation is rightmost if productions are
always applied to the rightmost nonterminal
at each step in a derivation.

G:
S → AB | BA

A → a

B → Ab

Leftmost derivation:

S ⇒
lm

BA ⇒
lm

AbA

⇒
lm

abA ⇒
lm

aba
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Ambiguous Grammars (1)

A CFG G is ambiguous if some word in L(G)
has more than one derivation tree.
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Ambiguous Grammars (1)

A CFG G is ambiguous if some word in L(G)
has more than one derivation tree.

A derivation tree determines a unique leftmost
and a unique rightmost derivation.
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Ambiguous Grammars (1)

A CFG G is ambiguous if some word in L(G)
has more than one derivation tree.

A derivation tree determines a unique leftmost
and a unique rightmost derivation.

Thus, equivalently: A CFG G is ambiguous if
some word in L(G) has

• more than one leftmost derivation, or

• more than one rightmost derivation.
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Ambiguous Grammars (2)

• A CFL for which every CFG is ambiguous is
inherently ambiguous.
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Ambiguous Grammars (2)

• A CFL for which every CFG is ambiguous is
inherently ambiguous.

- The following language L is inherently
ambiguous:

L = {anbncmdm | n ≥ 1,m ≥ 1}

∪{anbmcmdn | n ≥ 1,m ≥ 1}
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Ambiguous Grammars (2)

• A CFL for which every CFG is ambiguous is
inherently ambiguous.

- The following language L is inherently
ambiguous:

L = {anbncmdm | n ≥ 1,m ≥ 1}

∪{anbmcmdn | n ≥ 1,m ≥ 1}

- Reason: All but a finite number of strings of
the form anbncndn must be generated in two
different ways. (The proof is not easy!)
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Ambiguous Grammars (3)

• Most CFLs are not inherently ambiguous; i.e.,
an ambiguous CFG G for a language L can
often be transformed into an equivalent but
unambiguous grammar G′.
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Ambiguous Grammars (3)

• Most CFLs are not inherently ambiguous; i.e.,
an ambiguous CFG G for a language L can
often be transformed into an equivalent but
unambiguous grammar G′.

• The ambiguity of a CFG is in general
undecidable.
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Eliminating Ambiguity: Dangling-Else

Consider the following “dangling-else” grammar:

Stmt → if Expr then Stmt

| if Expr then Stmt else Stmt

| other

and the following program fragment:

if expr 1 then if expr 2 then stmt1 else stmt2

Two possible parse trees!
Hence the grammar is ambiguous!
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Elim. Ambiguity: Dangling-Else (2)

Tree 1:

Stmt

if

if then

then

else

Stmt

StmtStmt

Expr

Expr
expr

1

expr
2

stmt
1

stmt
2

Tree 2:

Stmt

if

if then

then elseStmt Stmt

Stmt

Expr

Expr
expr

1

expr
2

stmt
1

stmt
2
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Elim. Ambiguity: Dangling-Else (3)

Note that the distinction is important, as the two
trees suggest different semantics.

For example, suppose expr 1 evaluates to true,
and expr 2 evaluates to false. Which, if any, of
stmt1 and stmt2 gets executed?
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Elim. Ambiguity: Dangling-Else (4)

Preferred interpretation:

“Match each else with the closest
previous unmatched then”

That is, Tree 1 is preferred.
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Elim. Ambiguity: Dangling-Else (4)

Preferred interpretation:

“Match each else with the closest
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Elim. Ambiguity: Dangling-Else (4)

Preferred interpretation:
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previous unmatched then”

That is, Tree 1 is preferred.

Q: How can that be achieved?

A: Transform the grammar into an equivalent
but unambiguous grammar.
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Elim. Ambiguity: Dangling-Else (4)

Preferred interpretation:

“Match each else with the closest
previous unmatched then”

That is, Tree 1 is preferred.

Q: How can that be achieved?

A: Transform the grammar into an equivalent
but unambiguous grammar.

Exercise: convince yourself that the following
grammar indeed is equivalent!
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Elim. Ambiguity: Dangling-Else (5)

Idea: a statement appearing between a then

and an else must be a “matched” statement.

Stmt → MatchedStmt

| UnmatchedStmt

MatchedStmt → if Expr then MatchedStmt

else MatchedStmt

| other

UnmatchedStmt → if Expr then Stmt

| if Expr then MatchedStmt

else UnmatchedStmt
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Elim. Ambiguity: Dangling-Else (6)

Compare with the grammar for if-statements
given in section 14.9 of the Java Language
Specification, Third Edition:

http://java.sun.com/docs/books/jls

It uses the grammar structure of the previous
slide to solve the dangling-else problem, even if
the names of the non-terminals are somewhat
different.
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Eliminating Ambiguity: Associativity

It is standard practice to leave out unnecessary
parentheses when writing down mathematical
expressions:

1 + 2 + 3 instead of (1 + 2) + 3

47− 3− 2 instead of (47− 3)− 2
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Eliminating Ambiguity: Associativity

It is standard practice to leave out unnecessary
parentheses when writing down mathematical
expressions:

1 + 2 + 3 instead of (1 + 2) + 3

47− 3− 2 instead of (47− 3)− 2

We would like to do the same when writing
programs!
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Elim. Ambiguity: Associativity (2)

The following grammar achieves that:

Expr → integer

| Expr + Expr

| Expr - Expr

| ( Expr )
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Elim. Ambiguity: Associativity (2)

The following grammar achieves that:

Expr → integer

| Expr + Expr

| Expr - Expr

| ( Expr )

But ambiguous! Parse trees for 1 + 2 + 3:

1

Expr

3+Expr

2+ 2

Expr

1 + Expr

3+

(Slightly simplified: 1, 2, etc. considered terminals.)
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Elim. Ambiguity: Associativity (3)

If we make the choice of letting the parse tree
structure impart the bracketing structure, we see
that the two parse trees correspond to

• (1 + 2) + 3

• 1 + (2 + 3)
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Elim. Ambiguity: Associativity (3)

If we make the choice of letting the parse tree
structure impart the bracketing structure, we see
that the two parse trees correspond to

• (1 + 2) + 3

• 1 + (2 + 3)

Similarly, 47 - 3 - 2 can be parsed in two ways:

• (47 - 3) - 2

• 47 - (3 - 2)

Clearly the choice affects the of the code!
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Elim. Ambiguity: Associativity (4)

• The choice might not seem important for +
since, mathematically, + is associative:

(1 + 2) + 3 = 1 + (2 + 3) = 6
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Elim. Ambiguity: Associativity (4)

• The choice might not seem important for +
since, mathematically, + is associative:

(1 + 2) + 3 = 1 + (2 + 3) = 6

But the computer implementation of +
might not be so well-behaved!
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• The choice might not seem important for +
since, mathematically, + is associative:

(1 + 2) + 3 = 1 + (2 + 3) = 6

But the computer implementation of +
might not be so well-behaved!

- Floating-point addition is not associative!
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Elim. Ambiguity: Associativity (4)

• The choice might not seem important for +
since, mathematically, + is associative:

(1 + 2) + 3 = 1 + (2 + 3) = 6

But the computer implementation of +
might not be so well-behaved!

- Floating-point addition is not associative!

- Integer addition is not associative if e.g.
overflow is trapped.

G53CMP: Recap of Basic Formal Language Notions – p.41/52



Elim. Ambiguity: Associativity (5)

• The choice clearly matters for −:

(47− 3)− 2 6= 47− (3− 2)
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Elim. Ambiguity: Associativity (6)

To disambiguate, we want to make both + and -

left-associative.

That can be achieved by making the relevant
grammar productions left-recursive:

Expr → PrimExpr

| Expr + PrimExpr

| Expr - PrimExpr

PrimExpr → integer

| ( Expr )
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Elim. Ambiguity: Associativity (7)

Thus, 1 + 2 + 3 is parsed as (1 + 2) + 3:

1

Expr

3

+Expr

2

+

PrimExpr

PrimExprExpr

PrimExpr

And 47 - 3 - 2 is parsed as (47 - 3) - 2:

47

Expr

2

-Expr

3

-

PrimExpr

PrimExprExpr

PrimExpr
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Elim. Ambiguity: Associativity (8)

Some operators are usually considered
right-associative.

Consider an arithmetic exponentiation operator ^.
We would like

3 ˆ 2 ˆ 3

to be parsed as

3 ˆ (2 ˆ 3)

so that the meaning is 32
3

= 3(2
3) = 6561 rather

than (32)3 = 729.
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Elim. Ambiguity: Associativity (9)

An operator can be made right-associative
through right-recursive grammar productions:

ExpExpr → PrimExpr

| PrimExpr ^ ExpExpr

PrimExpr → integer

| ( Expr )

3

ExpExpr

3

^

ExpExpr

2

^

ExpExprPrimExpr

PrimExpr

PrimExpr
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Eliminating Ambiguity: Precedence (1)

We would also like to be able to rely on standard
rules for operator precedence to make it clear
what is meant.

For example, it should be possible to write

1 + 2 * 3

instead of having to write out the fully
parenthesized version

1 + (2 * 3)
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Eliminating Ambiguity: Precedence (2)

We chose to make * left-associative (standard).
The following grammar accepts expressions like
1 + 2 * 3:

Expr → PrimExpr

| Expr + PrimExpr

| Expr * PrimExpr

PrimExpr → integer

| ( Expr )
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Eliminating Ambiguity: Precedence (3)

However, the meaning is not what we want!

1 + 2 * 3 gets parsed as (1 + 2) * 3:

1

Expr

3

*Expr

2

+

PrimExpr

PrimExprExpr

PrimExpr
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Eliminating Ambiguity: Precedence (4)

We rewrite the grammar so that expressions
involving high-precedence operators only can
occur as subexpressions of expressions
involving low-precedence operators.

Expr → MulExpr

| Expr + MulExpr

MulExpr → PrimExpr

| MulExpr * PrimExpr

PrimExpr → integer

| ( Expr )
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Eliminating Ambiguity: Precedence (5)

Now 1 + 2 * 3 gets parsed as 1 + (2 * 3):

1

MulExpr

3

*

Expr

2

+

MulExpr MulExpr PrimExpr

Expr

PrimExpr PrimExpr
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Other ways of dealing with ambiguity

Transforming a grammar to eliminate ambiguity is
not always desirable:

• Can be quite hard to do correctly.

• The transformed grammar might be less easy
to understand than the original.

Parser generator tools often provide alternative
disambiguation mechanisms:

• Meta-rules that favours the longest RHS
among a group of conflicting productions.

• Explicit declaration of operator precedence.
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