
G53CMP: Recap of Basic Formal
Language Notions

Henrik Nilsson

University of Nottingham, UK

G53CMP: Recap of Basic Formal Language Notions – p.1/52

About These Slides

The following slides give a brief recap on some
central notions from the theory of formal
languages, along with illustrative examples of
specific relevance to G53CMP (including the
coursework). This is material that has been
covered in G52LAC and should be familiar to
students taking G53CMP. This material will thus
not be covered in detail in the G53CMP lectures,
but is offered here for your convenience if you
need to refresh these concepts. You may want to
go back the G52LAC lecture notes if you need
even more details.

G53CMP: Recap of Basic Formal Language Notions – p.2/52

Content

• Formal Languages

• Context-Free Grammars

• Ambiguous Grammars

• Eliminating Ambiguity

- Dangling else

- Operator associativity

- Operator precedence

G53CMP: Recap of Basic Formal Language Notions – p.3/52

Languages (1)

• A symbol is a basic indivisible entity.
Concrete examples of symbols are letters and
digits.

G53CMP: Recap of Basic Formal Language Notions – p.4/52

Languages (1)

• A symbol is a basic indivisible entity.
Concrete examples of symbols are letters and
digits.

• A string or word is a finite sequence of
juxtapositioned symbols.
For example: a, b, and c are symbols and abcb
is a string.

G53CMP: Recap of Basic Formal Language Notions – p.4/52

Languages (1)

• A symbol is a basic indivisible entity.
Concrete examples of symbols are letters and
digits.

• A string or word is a finite sequence of
juxtapositioned symbols.
For example: a, b, and c are symbols and abcb
is a string.

• An alphabet is a finite set of symbols.
For example: {a, b, c}, ∅.

G53CMP: Recap of Basic Formal Language Notions – p.4/52

Languages (2)

• ǫ denotes the word of length 0, the empty
word.

G53CMP: Recap of Basic Formal Language Notions – p.5/52

Languages (2)

• ǫ denotes the word of length 0, the empty
word.

• A language (over alphabet Σ) is a set of
words (over alphabet Σ).
For example: Σ = {a}; one possible language
is L = {ǫ, a, aa, aaa}.

G53CMP: Recap of Basic Formal Language Notions – p.5/52

Languages (2)

• ǫ denotes the word of length 0, the empty
word.

• A language (over alphabet Σ) is a set of
words (over alphabet Σ).
For example: Σ = {a}; one possible language
is L = {ǫ, a, aa, aaa}.

• Σ∗ denotes the set of all words over an
alphabet Σ, including ǫ.

G53CMP: Recap of Basic Formal Language Notions – p.5/52

Languages: Examples

alphabet Σ = {a, b}

words ?

G53CMP: Recap of Basic Formal Language Notions – p.6/52

Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

G53CMP: Recap of Basic Formal Language Notions – p.6/52

Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

G53CMP: Recap of Basic Formal Language Notions – p.6/52

Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ?

G53CMP: Recap of Basic Formal Language Notions – p.6/52

Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

G53CMP: Recap of Basic Formal Language Notions – p.6/52

Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},

G53CMP: Recap of Basic Formal Language Notions – p.6/52

Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},

{an|n ≥ 0},

G53CMP: Recap of Basic Formal Language Notions – p.6/52

Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},

{an|n ≥ 0},

{anbn|n ≥ 0, n even}

G53CMP: Recap of Basic Formal Language Notions – p.6/52

Concatenation of Words

• Concatenation of words is denoted by
juxtaposition. For example:
Concatenation of ab and ba yields abba.

G53CMP: Recap of Basic Formal Language Notions – p.7/52

Concatenation of Words

• Concatenation of words is denoted by
juxtaposition. For example:
Concatenation of ab and ba yields abba.

• Concatenation is associative and has unit ǫ:

u(vw) = (uv)w

ǫu = u = uǫ

where u, v, w are words.

G53CMP: Recap of Basic Formal Language Notions – p.7/52

Concatenation of Languages (1)

Concatenation of words is extended to
languages by:

MN = {uv |u ∈ M ∧ v ∈ N}

Example:

M = {ǫ, a, aa}

N = {b, c}

MN = {uv |u ∈ {ǫ, a, aa} ∧ v ∈ {b, c}}

= {ǫb, ǫc, ab, ac, aab, aac}

= {b, c, ab, ac, aab, aac}

G53CMP: Recap of Basic Formal Language Notions – p.8/52

Concatenation of Languages (2)

• Concatenation of languages is associative:

L(MN) = (LM)N

• Concatenation of languages has unit {ǫ}:

L{ǫ} = L = {ǫ}L

• Concatenation distributes through set union:

L(M ∪N) = LM ∪ LN

(L ∪M)N = LN ∪MN

G53CMP: Recap of Basic Formal Language Notions – p.9/52

Context-Free Grammars (1)

A Context-Free Grammar (CFG) is a way of
formally describing Context-Free Languages
(CFL):

G53CMP: Recap of Basic Formal Language Notions – p.10/52

Context-Free Grammars (1)

A Context-Free Grammar (CFG) is a way of
formally describing Context-Free Languages
(CFL):

• The CFLs captures ideas common in
programming languages such as

- nested structure

- balanced parentheses

- matching keywords like begin and end.

G53CMP: Recap of Basic Formal Language Notions – p.10/52

Context-Free Grammars (1)

A Context-Free Grammar (CFG) is a way of
formally describing Context-Free Languages
(CFL):

• The CFLs captures ideas common in
programming languages such as

- nested structure

- balanced parentheses

- matching keywords like begin and end.

• Most “reasonable” CFLs can be recognised
by a fairly simple machine: a deterministic
pushdown automaton.

G53CMP: Recap of Basic Formal Language Notions – p.10/52

Context-Free Grammars (2)

Thus, describing a programming language by a
“reasonable” CFG

G53CMP: Recap of Basic Formal Language Notions – p.11/52

Context-Free Grammars (2)

Thus, describing a programming language by a
“reasonable” CFG

• allows context-free constraints to be expressed

G53CMP: Recap of Basic Formal Language Notions – p.11/52

Context-Free Grammars (2)

Thus, describing a programming language by a
“reasonable” CFG

• allows context-free constraints to be expressed

• imparts a hierarchical structure to the words
in the language

G53CMP: Recap of Basic Formal Language Notions – p.11/52

Context-Free Grammars (2)

Thus, describing a programming language by a
“reasonable” CFG

• allows context-free constraints to be expressed

• imparts a hierarchical structure to the words
in the language

• allows simple and efficient parsing:

- determining if a word belongs to the
language

- determining its phrase structure if so.

G53CMP: Recap of Basic Formal Language Notions – p.11/52

Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

G53CMP: Recap of Basic Formal Language Notions – p.12/52

Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals

G53CMP: Recap of Basic Formal Language Notions – p.12/52

Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals

• T is a finite set of terminals (the alphabet of
the language being described)

G53CMP: Recap of Basic Formal Language Notions – p.12/52

Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals

• T is a finite set of terminals (the alphabet of
the language being described)

• N ∩ T = ∅ (N and T are disjoint)

G53CMP: Recap of Basic Formal Language Notions – p.12/52

Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals

• T is a finite set of terminals (the alphabet of
the language being described)

• N ∩ T = ∅ (N and T are disjoint)

• S, the start symbol, is a distinguished
element of N

G53CMP: Recap of Basic Formal Language Notions – p.12/52

Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals

• T is a finite set of terminals (the alphabet of
the language being described)

• N ∩ T = ∅ (N and T are disjoint)

• S, the start symbol, is a distinguished
element of N

• P is a finite set of productions, written A → α,
where A ∈ N and α ∈ (N ∪ T)∗

G53CMP: Recap of Basic Formal Language Notions – p.12/52

Context-Free Grammar: Example

G = ({S,A}, {a, b}, P, S)

where P consists of the productions

S → ǫ

S → aA

A → bS

G53CMP: Recap of Basic Formal Language Notions – p.13/52

Context-Free Grammars: Notation

• Productions with the same LHS are usually
grouped together. For example, the
productions for S from the previous example:

S → ǫ | aA

This is (roughly) what is known as
Backus-Naur Form.

G53CMP: Recap of Basic Formal Language Notions – p.14/52

Context-Free Grammars: Notation

• Productions with the same LHS are usually
grouped together. For example, the
productions for S from the previous example:

S → ǫ | aA

This is (roughly) what is known as
Backus-Naur Form.

• Another common way of writing productions is

A ::= α

G53CMP: Recap of Basic Formal Language Notions – p.14/52

The Directly Derives Relation (1)

To formally define the language generated by

G = (N,T, P, S)

we first define a binary relation ⇒
G

on strings over

N ∪ T , read “directly derives in grammar G”,
being the least relation such that

αAγ ⇒
G

αβγ

whenever A → β is a production in G.

G53CMP: Recap of Basic Formal Language Notions – p.15/52

The Directly Derives Relation (1)

To formally define the language generated by

G = (N,T, P, S)

we first define a binary relation ⇒
G

on strings over

N ∪ T , read “directly derives in grammar G”,
being the least relation such that

αAγ ⇒
G

αβγ

whenever A → β is a production in G.
Note: a production can be applied regardless of

context, hence context-free.
G53CMP: Recap of Basic Formal Language Notions – p.15/52

The Directly Derives Relation (2)

When it is clear which grammar G is involved, we
use ⇒ instead of ⇒

G

.

Example: Given the grammar

S → ǫ | aA

A → bS

we have

S ⇒ ǫ

S ⇒ aA

aA ⇒ abS

SaAaa ⇒ SabSaa

G53CMP: Recap of Basic Formal Language Notions – p.16/52

The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

G53CMP: Recap of Basic Formal Language Notions – p.17/52

The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

• α
∗
⇒
G

β if α ⇒
G

β

G53CMP: Recap of Basic Formal Language Notions – p.17/52

The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

• α
∗
⇒
G

β if α ⇒
G

β

• α
∗
⇒
G

α (reflexive)

G53CMP: Recap of Basic Formal Language Notions – p.17/52

The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

• α
∗
⇒
G

β if α ⇒
G

β

• α
∗
⇒
G

α (reflexive)

• α
∗
⇒
G

β if α
∗
⇒
G

γ ∧ γ
∗
⇒
G

β (transitive)

G53CMP: Recap of Basic Formal Language Notions – p.17/52

The Derives Relation (2)

Again, we use
∗
⇒ instead of

∗
⇒
G

when G is obvious.

Example: Given the grammar

S → ǫ | aA

A → bS

we have

S
∗
⇒ ǫ

S
∗
⇒ aA

aA
∗
⇒ abS

S
∗
⇒ abS

S
∗
⇒ ababS

S
∗
⇒ abab

G53CMP: Recap of Basic Formal Language Notions – p.18/52

Language Generated by a Grammar

The language generated by a context-free
grammar

G = (N,T, P, S)

denoted L(G), is defined as follows:

L(G) = {w | w ∈ T ∗ ∧ S
∗
⇒
G

w}

A language L is a Context-Free Language
(CFL) iff L = L(G) for some CFG G.

A string α ∈ (N ∪ T)∗ is a sentential form iff

S
∗
⇒ α.

G53CMP: Recap of Basic Formal Language Notions – p.19/52

Language Generation: Example

Given the grammar
G = (N = {S,A}, T = {a, b}, P, S) where P are
the productions

S → ǫ | aA

A → bS

we have

L(G) = {(ab)i | i ≥ 0}

= {ǫ, ab, abab, ababab, abababab, . . .}

G53CMP: Recap of Basic Formal Language Notions – p.20/52

Equivalence of Grammars

Two grammars G1 and G2 are equivalent iff
L(G1) = L(G2).

Example:

G1:
S → ǫ | A

A → a | aA
G2:

S → A

A → ǫ | Aa

L(G1) = {a}∗ = L(G2)

G53CMP: Recap of Basic Formal Language Notions – p.21/52

Equivalence of Grammars

Two grammars G1 and G2 are equivalent iff
L(G1) = L(G2).

Example:

G1:
S → ǫ | A

A → a | aA
G2:

S → A

A → ǫ | Aa

L(G1) = {a}∗ = L(G2)

Note: the equivalence of CFGs is in general
undecidable.

G53CMP: Recap of Basic Formal Language Notions – p.21/52

Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

G53CMP: Recap of Basic Formal Language Notions – p.22/52

Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

• every vertex has a label from N ∪ T ∪ {ǫ}

G53CMP: Recap of Basic Formal Language Notions – p.22/52

Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

• every vertex has a label from N ∪ T ∪ {ǫ}
• the label of the root is S

G53CMP: Recap of Basic Formal Language Notions – p.22/52

Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

• every vertex has a label from N ∪ T ∪ {ǫ}
• the label of the root is S

• labels of interior vertices belong to N

G53CMP: Recap of Basic Formal Language Notions – p.22/52

Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

• every vertex has a label from N ∪ T ∪ {ǫ}
• the label of the root is S

• labels of interior vertices belong to N

• if vertex n has label A and vertices n1, n2, . . . , nk

are the children of n, from left to right, with
labels X1, X2, . . . , Xk, then A → X1X2 · · ·Xk

is a production in P

G53CMP: Recap of Basic Formal Language Notions – p.22/52

Derivation Tree

A tree is a derivation or parse tree for CFG
G = (N,T, P, S) if:

• every vertex has a label from N ∪ T ∪ {ǫ}
• the label of the root is S

• labels of interior vertices belong to N

• if vertex n has label A and vertices n1, n2, . . . , nk

are the children of n, from left to right, with
labels X1, X2, . . . , Xk, then A → X1X2 · · ·Xk

is a production in P

• if a vertex n has label ǫ, then n is a leaf and
the only child of its parent.

G53CMP: Recap of Basic Formal Language Notions – p.22/52

Derivation Tree: Example

Derivation tree for the string abab ∈ L(G):

G: S → ǫ | aA

A → bS

S

a A

Sb

a A

Sb

ε

G53CMP: Recap of Basic Formal Language Notions – p.23/52

Derivations and Derivation Trees

Given a derivation tree for a grammar G:

• The string of leaf labels read from left to right
is the yield of the tree.

• The yield is a sentential form of G.

G53CMP: Recap of Basic Formal Language Notions – p.24/52

Derivations and Derivation Trees

Given a derivation tree for a grammar G:

• The string of leaf labels read from left to right
is the yield of the tree.

• The yield is a sentential form of G.

The derives relation and derivation trees are
related as follows:

A string α is the yield of some derivation

tree for a grammar G iff S
∗
⇒
G

α.

G53CMP: Recap of Basic Formal Language Notions – p.24/52

Regular Grammars

• Lexical syntax is usually defined through
Regular Languages.

G53CMP: Recap of Basic Formal Language Notions – p.25/52

Regular Grammars

• Lexical syntax is usually defined through
Regular Languages.

• The regular languages are a proper subset of
the context-free languages.

G53CMP: Recap of Basic Formal Language Notions – p.25/52

Regular Grammars

• Lexical syntax is usually defined through
Regular Languages.

• The regular languages are a proper subset of
the context-free languages.

• Context-free grammars can thus be used to
describe regular languages.

G53CMP: Recap of Basic Formal Language Notions – p.25/52

Regular Grammars

• Lexical syntax is usually defined through
Regular Languages.

• The regular languages are a proper subset of
the context-free languages.

• Context-free grammars can thus be used to
describe regular languages.

• If a grammar G is left-linear or right-linear,
then G is a regular grammar and L(G) is a
regular language.

G53CMP: Recap of Basic Formal Language Notions – p.25/52

Regular Grammars

• Lexical syntax is usually defined through
Regular Languages.

• The regular languages are a proper subset of
the context-free languages.

• Context-free grammars can thus be used to
describe regular languages.

• If a grammar G is left-linear or right-linear,
then G is a regular grammar and L(G) is a
regular language.

• Regular languages are easy to recognize (DFA).

G53CMP: Recap of Basic Formal Language Notions – p.25/52

Right-linear Grammar

A CFG G = (N,T, P, S) is right-linear if all its
productions are of the forms

A → wB

A → w

where A,B ∈ N and w ∈ T ∗.

Example: The regular language 0(10)∗ is
generated by the right-linear grammar

S → 0A

A → 10A | ǫ

G53CMP: Recap of Basic Formal Language Notions – p.26/52

Left-linear Grammar

A CFG G = (N,T, P, S) is left-linear if all its
productions are of the forms

A → Bw

A → w

where A,B ∈ N and w ∈ T ∗.

Example: The regular language 0(10)∗ is
generated by the left-linear grammar

S → S10 | 0

G53CMP: Recap of Basic Formal Language Notions – p.27/52

Leftmost and Rightmost Derivations

• A derivation is leftmost if productions are
always applied to the leftmost nonterminal at
each step in a derivation.

• A derivation is rightmost if productions are
always applied to the rightmost nonterminal
at each step in a derivation.

G:
S → AB | BA

A → a

B → Ab

Leftmost derivation:

S ⇒
lm

BA ⇒
lm

AbA

⇒
lm

abA ⇒
lm

aba

G53CMP: Recap of Basic Formal Language Notions – p.28/52

Ambiguous Grammars (1)

A CFG G is ambiguous if some word in L(G)
has more than one derivation tree.

G53CMP: Recap of Basic Formal Language Notions – p.29/52

Ambiguous Grammars (1)

A CFG G is ambiguous if some word in L(G)
has more than one derivation tree.

A derivation tree determines a unique leftmost
and a unique rightmost derivation.

G53CMP: Recap of Basic Formal Language Notions – p.29/52

Ambiguous Grammars (1)

A CFG G is ambiguous if some word in L(G)
has more than one derivation tree.

A derivation tree determines a unique leftmost
and a unique rightmost derivation.

Thus, equivalently: A CFG G is ambiguous if
some word in L(G) has

• more than one leftmost derivation, or

• more than one rightmost derivation.

G53CMP: Recap of Basic Formal Language Notions – p.29/52

Ambiguous Grammars (2)

• A CFL for which every CFG is ambiguous is
inherently ambiguous.

G53CMP: Recap of Basic Formal Language Notions – p.30/52

Ambiguous Grammars (2)

• A CFL for which every CFG is ambiguous is
inherently ambiguous.

- The following language L is inherently
ambiguous:

L = {anbncmdm | n ≥ 1,m ≥ 1}

∪{anbmcmdn | n ≥ 1,m ≥ 1}

G53CMP: Recap of Basic Formal Language Notions – p.30/52

Ambiguous Grammars (2)

• A CFL for which every CFG is ambiguous is
inherently ambiguous.

- The following language L is inherently
ambiguous:

L = {anbncmdm | n ≥ 1,m ≥ 1}

∪{anbmcmdn | n ≥ 1,m ≥ 1}

- Reason: All but a finite number of strings of
the form anbncndn must be generated in two
different ways. (The proof is not easy!)

G53CMP: Recap of Basic Formal Language Notions – p.30/52

Ambiguous Grammars (3)

• Most CFLs are not inherently ambiguous; i.e.,
an ambiguous CFG G for a language L can
often be transformed into an equivalent but
unambiguous grammar G′.

G53CMP: Recap of Basic Formal Language Notions – p.31/52

Ambiguous Grammars (3)

• Most CFLs are not inherently ambiguous; i.e.,
an ambiguous CFG G for a language L can
often be transformed into an equivalent but
unambiguous grammar G′.

• The ambiguity of a CFG is in general
undecidable.

G53CMP: Recap of Basic Formal Language Notions – p.31/52

Eliminating Ambiguity: Dangling-Else

Consider the following “dangling-else” grammar:

Stmt → if Expr then Stmt

| if Expr then Stmt else Stmt

| other

and the following program fragment:

if expr 1 then if expr 2 then stmt1 else stmt2

Two possible parse trees!
Hence the grammar is ambiguous!

G53CMP: Recap of Basic Formal Language Notions – p.32/52

Elim. Ambiguity: Dangling-Else (2)

Tree 1:

Stmt

if

if then

then

else

Stmt

StmtStmt

Expr

Expr
expr

1

expr
2

stmt
1

stmt
2

Tree 2:

Stmt

if

if then

then elseStmt Stmt

Stmt

Expr

Expr
expr

1

expr
2

stmt
1

stmt
2

G53CMP: Recap of Basic Formal Language Notions – p.33/52

Elim. Ambiguity: Dangling-Else (3)

Note that the distinction is important, as the two
trees suggest different semantics.

For example, suppose expr 1 evaluates to true,
and expr 2 evaluates to false. Which, if any, of
stmt1 and stmt2 gets executed?

G53CMP: Recap of Basic Formal Language Notions – p.34/52

Elim. Ambiguity: Dangling-Else (4)

Preferred interpretation:

“Match each else with the closest
previous unmatched then”

That is, Tree 1 is preferred.

G53CMP: Recap of Basic Formal Language Notions – p.35/52

Elim. Ambiguity: Dangling-Else (4)

Preferred interpretation:

“Match each else with the closest
previous unmatched then”

That is, Tree 1 is preferred.

Q: How can that be achieved?

G53CMP: Recap of Basic Formal Language Notions – p.35/52

Elim. Ambiguity: Dangling-Else (4)

Preferred interpretation:

“Match each else with the closest
previous unmatched then”

That is, Tree 1 is preferred.

Q: How can that be achieved?

A: Transform the grammar into an equivalent
but unambiguous grammar.

G53CMP: Recap of Basic Formal Language Notions – p.35/52

Elim. Ambiguity: Dangling-Else (4)

Preferred interpretation:

“Match each else with the closest
previous unmatched then”

That is, Tree 1 is preferred.

Q: How can that be achieved?

A: Transform the grammar into an equivalent
but unambiguous grammar.

Exercise: convince yourself that the following
grammar indeed is equivalent!

G53CMP: Recap of Basic Formal Language Notions – p.35/52

Elim. Ambiguity: Dangling-Else (5)

Idea: a statement appearing between a then

and an else must be a “matched” statement.

Stmt → MatchedStmt

| UnmatchedStmt

MatchedStmt → if Expr then MatchedStmt

else MatchedStmt

| other

UnmatchedStmt → if Expr then Stmt

| if Expr then MatchedStmt

else UnmatchedStmt

G53CMP: Recap of Basic Formal Language Notions – p.36/52

Elim. Ambiguity: Dangling-Else (6)

Compare with the grammar for if-statements
given in section 14.9 of the Java Language
Specification, Third Edition:

http://java.sun.com/docs/books/jls

It uses the grammar structure of the previous
slide to solve the dangling-else problem, even if
the names of the non-terminals are somewhat
different.

G53CMP: Recap of Basic Formal Language Notions – p.37/52

Eliminating Ambiguity: Associativity

It is standard practice to leave out unnecessary
parentheses when writing down mathematical
expressions:

1 + 2 + 3 instead of (1 + 2) + 3

47− 3− 2 instead of (47− 3)− 2

G53CMP: Recap of Basic Formal Language Notions – p.38/52

Eliminating Ambiguity: Associativity

It is standard practice to leave out unnecessary
parentheses when writing down mathematical
expressions:

1 + 2 + 3 instead of (1 + 2) + 3

47− 3− 2 instead of (47− 3)− 2

We would like to do the same when writing
programs!

G53CMP: Recap of Basic Formal Language Notions – p.38/52

Elim. Ambiguity: Associativity (2)

The following grammar achieves that:

Expr → integer

| Expr + Expr

| Expr - Expr

| (Expr)

G53CMP: Recap of Basic Formal Language Notions – p.39/52

Elim. Ambiguity: Associativity (2)

The following grammar achieves that:

Expr → integer

| Expr + Expr

| Expr - Expr

| (Expr)

But ambiguous! Parse trees for 1 + 2 + 3:

1

Expr

3+Expr

2+ 2

Expr

1 + Expr

3+

(Slightly simplified: 1, 2, etc. considered terminals.)

G53CMP: Recap of Basic Formal Language Notions – p.39/52

Elim. Ambiguity: Associativity (3)

If we make the choice of letting the parse tree
structure impart the bracketing structure, we see
that the two parse trees correspond to

• (1 + 2) + 3

• 1 + (2 + 3)

G53CMP: Recap of Basic Formal Language Notions – p.40/52

Elim. Ambiguity: Associativity (3)

If we make the choice of letting the parse tree
structure impart the bracketing structure, we see
that the two parse trees correspond to

• (1 + 2) + 3

• 1 + (2 + 3)

Similarly, 47 - 3 - 2 can be parsed in two ways:

• (47 - 3) - 2

• 47 - (3 - 2)

Clearly the choice affects the of the code!

G53CMP: Recap of Basic Formal Language Notions – p.40/52

Elim. Ambiguity: Associativity (4)

• The choice might not seem important for +
since, mathematically, + is associative:

(1 + 2) + 3 = 1 + (2 + 3) = 6

G53CMP: Recap of Basic Formal Language Notions – p.41/52

Elim. Ambiguity: Associativity (4)

• The choice might not seem important for +
since, mathematically, + is associative:

(1 + 2) + 3 = 1 + (2 + 3) = 6

But the computer implementation of +
might not be so well-behaved!

G53CMP: Recap of Basic Formal Language Notions – p.41/52

Elim. Ambiguity: Associativity (4)

• The choice might not seem important for +
since, mathematically, + is associative:

(1 + 2) + 3 = 1 + (2 + 3) = 6

But the computer implementation of +
might not be so well-behaved!

- Floating-point addition is not associative!

G53CMP: Recap of Basic Formal Language Notions – p.41/52

Elim. Ambiguity: Associativity (4)

• The choice might not seem important for +
since, mathematically, + is associative:

(1 + 2) + 3 = 1 + (2 + 3) = 6

But the computer implementation of +
might not be so well-behaved!

- Floating-point addition is not associative!

- Integer addition is not associative if e.g.
overflow is trapped.

G53CMP: Recap of Basic Formal Language Notions – p.41/52

Elim. Ambiguity: Associativity (5)

• The choice clearly matters for −:

(47− 3)− 2 6= 47− (3− 2)

G53CMP: Recap of Basic Formal Language Notions – p.42/52

Elim. Ambiguity: Associativity (6)

To disambiguate, we want to make both + and -

left-associative.

That can be achieved by making the relevant
grammar productions left-recursive:

Expr → PrimExpr

| Expr + PrimExpr

| Expr - PrimExpr

PrimExpr → integer

| (Expr)

G53CMP: Recap of Basic Formal Language Notions – p.43/52

Elim. Ambiguity: Associativity (7)

Thus, 1 + 2 + 3 is parsed as (1 + 2) + 3:

1

Expr

3

+Expr

2

+

PrimExpr

PrimExprExpr

PrimExpr

And 47 - 3 - 2 is parsed as (47 - 3) - 2:

47

Expr

2

-Expr

3

-

PrimExpr

PrimExprExpr

PrimExpr

G53CMP: Recap of Basic Formal Language Notions – p.44/52

Elim. Ambiguity: Associativity (8)

Some operators are usually considered
right-associative.

Consider an arithmetic exponentiation operator ^.
We would like

3 ˆ 2 ˆ 3

to be parsed as

3 ˆ (2 ˆ 3)

so that the meaning is 32
3

= 3(2
3) = 6561 rather

than (32)3 = 729.

G53CMP: Recap of Basic Formal Language Notions – p.45/52

Elim. Ambiguity: Associativity (9)

An operator can be made right-associative
through right-recursive grammar productions:

ExpExpr → PrimExpr

| PrimExpr ^ ExpExpr

PrimExpr → integer

| (Expr)

3

ExpExpr

3

^

ExpExpr

2

^

ExpExprPrimExpr

PrimExpr

PrimExpr

G53CMP: Recap of Basic Formal Language Notions – p.46/52

Eliminating Ambiguity: Precedence (1)

We would also like to be able to rely on standard
rules for operator precedence to make it clear
what is meant.

For example, it should be possible to write

1 + 2 * 3

instead of having to write out the fully
parenthesized version

1 + (2 * 3)

G53CMP: Recap of Basic Formal Language Notions – p.47/52

Eliminating Ambiguity: Precedence (2)

We chose to make * left-associative (standard).
The following grammar accepts expressions like
1 + 2 * 3:

Expr → PrimExpr

| Expr + PrimExpr

| Expr * PrimExpr

PrimExpr → integer

| (Expr)

G53CMP: Recap of Basic Formal Language Notions – p.48/52

Eliminating Ambiguity: Precedence (3)

However, the meaning is not what we want!

1 + 2 * 3 gets parsed as (1 + 2) * 3:

1

Expr

3

*Expr

2

+

PrimExpr

PrimExprExpr

PrimExpr

G53CMP: Recap of Basic Formal Language Notions – p.49/52

Eliminating Ambiguity: Precedence (4)

We rewrite the grammar so that expressions
involving high-precedence operators only can
occur as subexpressions of expressions
involving low-precedence operators.

Expr → MulExpr

| Expr + MulExpr

MulExpr → PrimExpr

| MulExpr * PrimExpr

PrimExpr → integer

| (Expr)

G53CMP: Recap of Basic Formal Language Notions – p.50/52

Eliminating Ambiguity: Precedence (5)

Now 1 + 2 * 3 gets parsed as 1 + (2 * 3):

1

MulExpr

3

*

Expr

2

+

MulExpr MulExpr PrimExpr

Expr

PrimExpr PrimExpr

G53CMP: Recap of Basic Formal Language Notions – p.51/52

Other ways of dealing with ambiguity

Transforming a grammar to eliminate ambiguity is
not always desirable:

• Can be quite hard to do correctly.

• The transformed grammar might be less easy
to understand than the original.

Parser generator tools often provide alternative
disambiguation mechanisms:

• Meta-rules that favours the longest RHS
among a group of conflicting productions.

• Explicit declaration of operator precedence.

G53CMP: Recap of Basic Formal Language Notions – p.52/52

	About These Slides
	Content
	Languages (1)
	Languages (2)
	Languages: Examples
	Concatenation of Words
	Concatenation of Languages (1)
	Concatenation of Languages (2)
	Context-Free Grammars (1)
	Context-Free Grammars (2)
	Context-Free Grammars (3)
	Context-Free Grammar: Example
	Context-Free Grammars: Notation
	The Directly Derives Relation (1)
	The Directly Derives Relation (2)
	The Derives Relation (1)
	The Derives Relation (2)
	Language Generated by a Grammar
	Language Generation: Example
	Equivalence of Grammars
	Derivation Tree
	Derivation Tree: Example
	Derivations and Derivation Trees
	Regular Grammars
	Right-linear Grammar
	Left-linear Grammar
	Leftmost and Rightmost Derivations
	Ambiguous Grammars (1)
	Ambiguous Grammars (2)
	Ambiguous Grammars (3)
	Eliminating Ambiguity: Dangling-Else
	Elim. Ambiguity: Dangling-Else (2)
	Elim. Ambiguity: Dangling-Else (3)
	Elim. Ambiguity: Dangling-Else (4)
	Elim. Ambiguity: Dangling-Else (5)
	Elim. Ambiguity: Dangling-Else (6)
	Eliminating Ambiguity: Associativity
	Elim. Ambiguity: Associativity (2)
	Elim. Ambiguity: Associativity (3)
	Elim. Ambiguity: Associativity (4)
	Elim. Ambiguity: Associativity (5)
	Elim. Ambiguity: Associativity (6)
	Elim. Ambiguity: Associativity (7)
	Elim. Ambiguity: Associativity (8)
	Elim. Ambiguity: Associativity (9)
	Eliminating Ambiguity: Precedence (1)
	Eliminating Ambiguity: Precedence (2)
	Eliminating Ambiguity: Precedence (3)
	Eliminating Ambiguity: Precedence (4)
	Eliminating Ambiguity: Precedence (5)
	Other ways of dealing with ambiguity

