G53CMP: Lecture 8
A Versatile Design Pattern: Monads

Henrik Nilsson

University of Nottingham, UK
Design Pattern [Wikipedia]:

[A] design pattern is a general reusable solution to a commonly occurring problem within a given context in software design.
• **Design Pattern [Wikipedia]**: [A] design pattern is a general reusable solution to a commonly occurring problem within a given context in software design.

• **Example**: In an OO Language like Java or C#, operations on data are tied to classes. Thus:
Perspective (1)

- Design Pattern [Wikipedia]:
 [A] design pattern is a general reusable solution to a commonly occurring problem within a given context in software design.
- Example: In an OO Language like Java or C#, operations on data are tied to classes. Thus:
 - Cannot (directly) add a new operation on data without changing all involved classes.
Design Pattern [Wikipedia]:

[A] design pattern is a general reusable solution to a commonly occurring problem within a given context in software design.

Example: In an OO Language like Java or C#, operations on data are tied to classes. Thus:
- Cannot (directly) add a new operation on data without changing all involved classes.
- The code for an operation gets spread out across all involved classes.
Solution: The *Visitor* pattern (or *double dispatch*):
Solution: The *Visitor* pattern (or *double dispatch*):
- Allows operations to be defined separately from data classes and in one place.
Solution: The *Visitor* pattern (or *double dispatch*):

- Allows operations to be defined separately from data classes and in one place.
- Allows operations to be defined by simple “pattern matching” (case analysis).
Solution: The *Visitor* pattern (or *double dispatch*):

- Allows operations to be defined separately from data classes and in one place.
- Allows operations to be defined by simple “pattern matching” (case analysis).

Not entirely trivial: takes a lecture to explain. See:

http://en.wikipedia.org/wiki/Visitor_pattern
Functional languages provides separation between operations and data, and typically pattern matching too, “for free”.
This Lecture

Functional languages provides separation between operations and data, and typically pattern matching too, “for free”.

However, handling *effects* in a *pure* language requires work because, by definition, there are no implicit effects in a pure language.
Functional languages provides separation between operations and data, and typically pattern matching too, “for free”.

However, handling effects in a pure language requires work because, by definition, there are no implicit effects in a pure language.

This lecture: A design pattern for effects.
A Blessing and a Curse
A Blessing and a Curse

- The **BIG** advantage of pure functional programming is
A Blessing and a Curse

- The **BIG** advantage of pure functional programming is

 “everything is explicit;”

i.e., flow of data manifest, no side effects.
A Blessing and a Curse

- The *BIG* advantage of pure functional programming is "everything is explicit;" i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.
A Blessing and a Curse

- The **BIG** advantage of pure functional programming is
 “**everything is explicit**;”
 i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.

- The **BIG** problem with pure functional programming is
A Blessing and a Curse

• The **BIG** advantage of pure functional programming is

 “everything is explicit;”

 i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.

• The **BIG** problem with pure functional programming is

 “everything is explicit.”
A Blessing and a Curse

• The **BIG** advantage of pure functional programming is
 “everything is explicit;”
 i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.

• The **BIG** problem with pure functional programming is
 “everything is explicit.”
 Can really add a lot of clutter, especially in large programs.
Example: LTXL Identification (1)

`enterVar` inserts a variable at the given scope level and of the given type into an environment.

- Check that no variable with same name has been defined at the same scope level.
- If not, the new variable is entered, and the `resulting environment` is returned.
- Otherwise an `error message` is returned.

```
enterVar :: Id -> Int -> Type -> Env
    -> Either Env ErrorMsg
```
Goals of LTXL identification phase:

- Annotate each applied identifier occurrence with attributes of the corresponding variable declaration.
 I.e., map unannotated AST $\texttt{Exp()}$ to annotated AST $\texttt{Exp \ Attri}$.

- Report conflicting variable definitions and undefined variables.

$$\text{identification} :: \quad \texttt{Exp()} \rightarrow (\texttt{Exp \ Attri} , \texttt{[ErrorMsg]})$$
Example: LTXL Identification (3)

\[
\text{identDefs } l \text{ env } [[] = ([], \text{env}, [])
\]

\[
\text{identDefs } l \text{ env } ((i,t,e) : ds) = \\
((i,t,e') : ds', \text{env''}, \text{ms1}++\text{ms2}++\text{ms3})
\]

where

\[
(e', \text{ms1}) = \text{identAux } l \text{ env } e
\]

\[
(\text{env'}, \text{ms2}) = \\
\quad \text{case enterVar } i \ l \ t \ \text{env} \ \text{of}
\quad \text{Left } \text{env'} \rightarrow (\text{env'}, [])
\quad \text{Right } m \rightarrow (\text{env}, [m])
\]

\[
(ds', \text{env''}, \text{ms3}) = \\
\quad \text{identDefs } l \ \text{env'} \ ds
\]
Error checking and collection of error messages arguably added a lot of clutter. The core of the algorithm is this:

```haskell
identDefs l env [] = ([], env)
identDefs l env ((i,t,e) : ds) =
  ((i,t,e') : ds', env'')
where
e' = identAux l env e
env' = enterVar i l t env
(ds', env'') = identDefs l env' ds
```
Example: A Simple Evaluator

data Exp = Lit Integer
 | Add Exp Exp
 | Sub Exp Exp
 | Mul Exp Exp
 | Div Exp Exp

eval :: Exp -> Integer
eval (Lit n) = n
eval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Div e1 e2) = eval e1 'div' eval e2
Making the evaluator safe (1)

safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
 case safeEval e1 of
 Nothing -> Nothing
 Just n1 ->
 case safeEval e2 of
 Nothing -> Nothing
 Just n2 -> Just (n1 + n2)
Making the evaluator safe (2)

safeEval (Sub e1 e2) =
 case safeEval e1 of
 Nothing -> Nothing
 Just n1 ->
 case safeEval e2 of
 Nothing -> Nothing
 Just n2 -> Just (n1 - n2)
safeEval (Mul e1 e2) =
 case safeEval e1 of
 Nothing -> Nothing
 Just n1 ->
 case safeEval e2 of
 Nothing -> Nothing
 Just n2 -> Just (n1 * n2)
safeEval (Div e1 e2) =
 case safeEval e1 of
 Nothing -> Nothing
 Just n1 ->
 case safeEval e2 of
 Nothing -> Nothing
 Just n2 ->
 if n2 == 0
 then Nothing
 else Just (n1 `div` n2)
Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?
Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:

- Sequencing of evaluations.
Any common pattern?

Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

- Sequencing of evaluations.
- If one evaluation fail, fail overall.
Any common pattern?

Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

- Sequencing of evaluations.
- If one evaluation fail, fail overall.
- Otherwise, make result available to following evaluations.
Example: Numbering trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
 where
 ntAux (Leaf _) n = (Leaf n, n+1)
 ntAux (Node t1 t2) n =
 let (t1′, n′) = ntAux t1 n
 in let (t2′, n′′) = ntAux t2 n′
 in (Node t1′ t2′, n′′)
Observations

- Repetitive pattern: threading a counter through a *sequence* of tree numbering *computations*.
Observations

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!
Observations

- Repetitive pattern: threading a counter through a *sequence* of tree numbering *computations*.

- It is very easy to pass on the wrong version of the counter!

Can we do better?
Sequencing is common to both examples, with the outcome of a computation *affecting* subsequent computations.

```
 evalSeq :: Maybe Integer
           -> (Integer -> Maybe Integer)
           -> Maybe Integer

 evalSeq ma f =
   case ma of
     Nothing -> Nothing
     Just a  -> f a
```
Sequencing evaluations (2)

```
safeEval (Add e1 e2) =
    case safeEval e1 of
        Nothing -> Nothing
        Just n1 ->
            case safeEval e2 of
                Nothing -> Nothing
                Just n2 -> Just (n1 + n2)

evalSeq ma f =
    case ma of
        Nothing -> Nothing
        Just a -> f a
```
Sequencing evaluations (3)

```haskell
safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
    safeEval e1 'evalSeq' (\n1 ->
    safeEval e2 'evalSeq' (\n2 ->
        Just (n1 + n2))
    Just (n1 + n2))
safeEval (Sub e1 e2) =
    safeEval e1 'evalSeq' (\n1 ->
    safeEval e2 'evalSeq' (\n2 ->
        Just (n1 - n2))
    Just (n1 - n2))
```
Sequencing evaluations (4)

```haskell
safeEval (Mul e1 e2) =
    safeEval e1 `evalSeq` (\n1 ->
    safeEval e2 `evalSeq` (\n2 ->
        Just (n1 - n2)))

safeEval (Div e1 e2) =
    safeEval e1 `evalSeq` (\n1 ->
    safeEval e2 `evalSeq` (\n2 ->
        if n2 == 0
        then Nothing
        else Just (n1 `div` n2)))
```
Aside: Scope rules of λ-abstractions

The scope rules of λ-abstractions are such that parentheses can be omitted:

```haskell
safeEval :: Exp -> Maybe Integer
...

safeEval (Add e1 e2) =
  safeEval e1 'evalSeq' \n1 ->
  safeEval e2 'evalSeq' \n2 ->
  Just (n1 + n2)
...
```
Exercise 1: Inline evalSeq (1)

\[
\text{safeEval (Add e1 e2)} = \\
\text{safeEval e1 \texttt{\textquotesingle}}\text{evalSeq\textquotesingle} \ \texttt{\textbackslash n1} \rightarrow \\
\text{safeEval e2 \texttt{\textquotesingle}}\text{evalSeq\textquotesingle} \ \texttt{\textbackslash n2} \rightarrow \\
\text{Just (n1 + n2)}
\]
Exercise 1: Inline evalSeq (1)

safeEval (Add e1 e2) =
 safeEval e1 'evalSeq' \n1 ->
 safeEval e2 'evalSeq' \n2 ->
 Just (n1 + n2)

=

safeEval (Add e1 e2) =
 case (safeEval e1) of
 Nothing -> Nothing
 Just a -> (\n1 -> safeEval e2 ...) a
Exercise 1: Inline `evalSeq (2)`

=

safeEval (Add e1 e2) =
 case (safeEval e1) of
 Nothing -> Nothing
 Just n1 -> safeEval e2 `evalSeq` (\n2 -> ...)

Exercise 1: Inline evalSeq (2)

=

safeEval (Add e1 e2) =
 case (safeEval e1) of
 Nothing -> Nothing
 Just n1 -> safeEval e2 `evalSeq` (\n2 -> ...)

=

safeEval (Add e1 e2) =
 case (safeEval e1) of
 Nothing -> Nothing
 Just n1 -> case safeEval e2 of
 Nothing -> Nothing
 Just a -> (\n2 -> ...) a
Exercise 1: Inline evalSeq (3)

=

safeEval (Add e1 e2) =
 case (safeEval e1) of
 Nothing -> Nothing
 Just n1 -> case safeEval e2 of
 Nothing -> Nothing
 Just n2 -> (Just n1 + n2)
Consider a value of type `Maybe a` as denoting a `computation` of a value of type `a` that `may fail`.
Maybe viewed as a computation (1)

- Consider a value of type `Maybe a` as denoting a *computation* of a value of type `a` that *may fail*.

- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
Maybe viewed as a computation (1)

- Consider a value of type `Maybe a` as denoting a `computation` of a value of type `a` that `may fail`.

- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.

- I.e. `failure is an effect`, implicitly affecting subsequent computations.
Maybe viewed as a computation (1)

- Consider a value of type `Maybe a` as denoting a *computation* of a value of type `a` that *may fail*.

- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.

- I.e. *failure is an effect*, implicitly affecting subsequent computations.

- Let’s adopt names reflecting our intentions.
Maybe viewed as a computation (2)

Successful computation of a value:

```haskell
mbReturn :: a -> Maybe a
mbReturn = Just
```

Sequencing of possibly failing computations:

```haskell
mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b
mbSeq ma f =
    case ma of
    Nothing -> Nothing
    Just a   -> f a
```
Maybe viewed as a computation (3)

Failing computation:

\[
\begin{align*}
\text{mbFail} &:: \text{Maybe } a \\
\text{mbFail} &= \text{Nothing}
\end{align*}
\]
The safe evaluator revisited

```haskell
safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = mbReturn n
safeEval (Add e1 e2) =
    safeEval e1 `mbSeq` \n1 ->
    safeEval e2 `mbSeq` \n2 ->
    mbReturn (n1 + n2)

...

safeEval (Div e1 e2) =
    safeEval e1 `mbSeq` \n1 ->
    safeEval e2 `mbSeq` \n2 ->
    if n2 == 0 then mbFail
    else mbReturn (n1 `div` n2))
```
Stateful Computations (1)

- A *stateful computation* consumes a state and returns a result along with a possibly updated state.
Stateful Computations (1)

- A *stateful computation* consumes a state and returns a result along with a possibly updated state.
- The following type synonym captures this idea:

  ```haskell
type S a = Int -> (a, Int)
```

(Only `Int` state for the sake of simplicity.)
A **stateful computation** consumes a state and returns a result along with a possibly updated state.

The following type synonym captures this idea:

```haskell
type S a = Int -> (a, Int)
```

(Only `Int` state for the sake of simplicity.)

A value (function) of type `S a` can now be viewed as denoting a stateful computation computing a value of type `a`.
Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
- I.e. **state updating is an effect**, implicitly affecting subsequent computations. (As we would expect.)
Stateful Computations (3)

Computation of a value without changing the state:

\[
\text{sReturn} :: a \rightarrow S\ a \\
\text{sReturn } a = \lambda n \rightarrow (a, n)
\]

Sequencing of stateful computations:

\[
\text{sSeq} :: S\ a \rightarrow (a \rightarrow S\ b) \rightarrow S\ b \\
\text{sSeq } sa \ f = \lambda n \rightarrow \\
\quad \text{let } (a', n') = sa\ n \\
\quad \text{in } f a\ n'
\]
Stateful Computations (4)

Reading and incrementing the state:

\[s\text{Inc} :: S \text{ Int} \]
\[s\text{Inc} = \lambda n \rightarrow (n, n + 1) \]
Numbering trees revisited

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)

where

 ntAux (Leaf _) =
 sInc 'sSeq' \n -> sReturn (Leaf n)
 ntAux (Node t1 t2) =
 ntAux t1 'sSeq' \t1' ->
 ntAux t2 'sSeq' \t2' ->
 sReturn (Node t1' t2)
Observations

- The “plumbing” has been captured by the abstractions.
Observations

- The “plumbing” has been captured by the abstractions.
- In particular, there is no longer any risk of “passing on” the wrong version of the state!
Comparison of the examples

• Both examples characterized by sequencing of effectful computations.
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing identically structured abstractions that encapsulated the effects:
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing identically structured abstractions that encapsulated the effects:
 - A type denoting computations
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing identically structured abstractions that encapsulated the effects:
 - A type denoting computations
 - A combinator for computing a value without any effect
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing identically structured abstractions that encapsulated the effects:
 - A type denoting computations
 - A combinator for computing a value without any effect
 - A combinator for sequencing computations
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing identically structured abstractions that encapsulated the effects:
 - A type denoting computations
 - A combinator for computing a value without any effect
 - A combinator for sequencing computations
- In fact, both examples are instances of the general notion of a **MONAD**.
Monads in Functional Programming

A monad is represented by:

- A type constructor
 \[M :: * \to * \]
 \[M \ T \] represents computations of a value of type \(T \).

- A polymorphic function
 \[\text{return} :: a \to M a \]
 for lifting a value to a computation.

- A polymorphic function
 \[(\gg=) :: M a \to (a \to M b) \to M b \]
 for sequencing computations.
In Haskell, the notion of a monad is captured by a **Type Class**:

```
class Monad m where
    return :: a -> m a
    (>>=) :: m a -> (a -> m b) -> m b
```

This allows the names of the common functions to be overloaded, and the sharing of derived definitions.
The Haskell monad class have two further methods with default instances:

\[
(\gg\gg) :: m \, a \to m \, b \to m \, b \\
m \gg\gg k = m \gg\gg _ \to k
\]

\[
\text{fail} :: \text{String} \to m \, a \\
\text{fail} \, s = \text{error} \, s
\]
The **Maybe** monad in Haskell

```haskell
instance Monad Maybe where
    -- return :: a -> Maybe a
    return = Just

    -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
    Nothing >>= _ = Nothing
    (Just x) >>= f = f x
```
To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

```haskell
fail :: String -> Maybe a
fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a
m1 `catch` m2 =
    case m1 of
        Just _    -> m1
        Nothing   -> m2
```
The do-notation (1)

Haskell provides convenient syntax for programming with monads:

\[
do
 \quad a \leftarrow \text{exp}_1 \\
 \quad b \leftarrow \text{exp}_2 \\
 \quad \text{return } \text{exp}_3
\]

is syntactic sugar for

\[
\text{exp}_1 \land \land \text{exp}_2 \\
\text{exp}_2 \land \land \text{exp}_3
\]
The do-notation (2)

Computations can be done solely for effect, ignoring the computed value:

```
do
  exp_1
  exp_2
  return exp_3
```

is syntactic sugar for

```
exp_1  >>= \_  ->
exp_2  >>= \_  ->
return exp_3
```
The HMTC Diagnostics Monad

D :: * -> * -- Instances: Monad.
emitInfoD :: SrcPos -> String -> D ()
emitWngD :: SrcPos -> String -> D ()
emitErrD :: SrcPos -> String -> D ()
failD :: SrcPos -> String -> D a
failNoReasonD :: D a
failIfErrorsD :: D ()
stopD :: D a
runD :: D a -> (Maybe a, [DMsg])

(Roughly: The actual HMTC impl. is more refined.)
Recall:

\[
\text{enterVar} :: \text{Id} \to \text{Int} \to \text{Type} \to \text{Env} \\
\quad \to \text{Either Env String}
\]

Let's define a version using the Diagnostics monad:

\[
\text{enterVarD} :: \text{Id} \to \text{Int} \to \text{Type} \to \text{Env} \to \text{D Env}
\]

\[
\text{enterVarD i l t env =}
\quad \text{case enterVar i l t env of}
\quad \quad \text{Left env' \to return env'}
\quad \quad \text{Right m \to do}
\quad \quad \quad \text{emitErrD NoSrcPos m}
\quad \quad \quad \text{return env}
\]
Identification Revisited (2)

Now we can define a monadic version of `identDefs`:

```haskell
identDefs :: Int -> Env -> [(Id,Type,Exp ())] -> D ([(Id,Type,Exp Attr)], Env)
identDefs l env [] = return ([], env)
identDefs l env ((i,t,e) : ds) = do
  e' <- identAux l env e
  env' <- enterVarD i l t env
  (ds', env'') <- identDefs l env' ds
  return ((i,t,e') : ds', env'')
```
Identification Revisited (3)

Compare with the “core” identified earlier!

```haskell
identDefs l env [] = ([], env)
identDefs l env ((i,t,e) : ds) =
    ((i,t,e') : ds', env'')
where
e' = identAux l env e
env' = enterVar i l t env
(ds', env'') = identDefs l env' ds
```

The monadic version is very close to ideal, without sacrificing functionality, clarity, or pureness!
Further Reading

 http://www.cs.nott.ac.uk/~gmh/monads