This Lecture

Data Representation: how to store various kinds of data.

- General issues
- Primitive types
- Record types
- Arrays
- Disjoint unions
- Recursive types

Data Representation?

- **Objective**: to store various kinds of data. Integers, characters, strings, arrays, trees, ...
- At our disposal: the *memory*:

<table>
<thead>
<tr>
<th>address</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10200008</td>
<td>3E124C21</td>
</tr>
<tr>
<td>1020000C</td>
<td>FE7B3811</td>
</tr>
<tr>
<td>10200010</td>
<td>7A7CBBB3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- We need to **encode** the data to be stored.

Data Representation: Issues (1)

- **Nonconfusion**: Different values of a given type *must* have different representations.
- **Uniqueness**: Each value should have exactly one representation.

Note: The discussion concerns *run-time* representation. Any value that is known *statically* potentially need no run-time representation at all, or might be represented in some specialised way on a case-by-case basis (e.g. multiplication by constant, loading large constants).
Nonconfusion (1)

Self-evident: if two *different* values are represented the *same* way, they cannot be told apart.

- **Dynamically checked language**: Every possible value must have a distinct representation.
- **(Statically) typed language**: Values of the *same* type must have distinct representations; the same representation may be reused for values of *different* types.

Nonconfusion (2)

Example: suppose both characters and small integers represented by 8-bit bytes:
- \(\text{repr('A')} = 01000001 \)
- \(\text{repr(65)} = 01000001 \)

Suppose a variable \(x \) contains this value \(01000001 \):
- Should \(\text{print(x)} \) print ‘A’ or 65?
 - No way to tell the representation of ‘A’ and 65 apart in a dynamically checked setting.
 - In a statically typed setting, the type is used to disambiguate.

Nonconfusion (3)

Example: Consider two enumeration types:
```haskell
data Colour = Red | Green
data Size = Small | Large
```

It must *always* be the case that
- \(\text{repr(\text{Red})} \neq \text{repr(\text{Green})} \)
- \(\text{repr(\text{Small})} \neq \text{repr(\text{Large})} \)

Further, in a dynamically checked setting:
- \(\{\text{repr(\text{Red})}, \text{repr(\text{Green})}\} \cap \{\text{repr(\text{Small})}, \text{repr(\text{Large})}\} = \emptyset \)

Uniqueness

Comparison of values is facilitated if each value has exactly one representation.

However, not essential. Common exceptions:
- \(0 \) is represented by both \(00\ldots00_2 \) and \(11\ldots11_2 \) in the ones-complement representation of integers.
- Floating-point representations typically have a separate sign bit. Thus, the representation of \(+0 \) is distinct from the representation of \(-0 \).
Data Representation: Issues (2)

- **Constant-size representation**: The representations of all values of a given type occupy the same amount of space.
- **Direct** or **indirect** (via pointer) representation.

Constant-size representation enables compiler to statically plan storage allocation (since type and hence size is known statically).

If not possible/too wasteful: use some form of indirect representation.

Direct or Indirect Representation (1)

- **Direct representation**: the representation of a value x is the binary representation of x:

![repr. x]

- **Indirect representation**: x represented by a handle that points to a binary representation of x (on the stack or in the heap):

![repr. x]

Direct or Indirect Representation (2)

- **Pros direct representation**:
 - efficient access
 - no heap allocation/deallocation overhead
- **Pros indirect representation**:
 - supports varying size data (like dynamic arrays)
 - supports recursive types (like linked lists, trees)
 - facilitates implementation of parametric polymorphism (as handles can be uniform)

Representing Primitive Types (1)

Primitive types are often supported directly by the underlying hardware. For example, a 32-bit machine might support:

- addressing of 8-bit bytes and 32-bit words
- 32-bit two's-complement integer arithmetic
- 64-bit floating point operations

There are also standard encoding conventions, such as the 7-bit ASCII or 8-bit ISO character codes, or the Unicode standard. Adopting such conventions facilitates interoperability and communication.
Representing Primitive Types (2)

On such a 32-bit machine, the following would be natural representation choices:

<table>
<thead>
<tr>
<th>Type</th>
<th>Representation</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td>0 for false; 1 for true</td>
<td>8-bit byte</td>
</tr>
<tr>
<td>Char</td>
<td>ISO Latin 1 encoding</td>
<td>8-bit byte</td>
</tr>
<tr>
<td>Integer</td>
<td>twos-complement repr.</td>
<td>32-bit word</td>
</tr>
<tr>
<td>Real</td>
<td>floating point repr.</td>
<td>64-bit word</td>
</tr>
</tbody>
</table>

Representing Records (1)

A record consists of several fields, each of which has an identifier. For example:

```pascal
type Date = record
  y: Integer,
  m: Integer,
  d: Integer
end;

type Details = record
  female: Boolean,
  dob: Date,
  status: Char
end;
```

Representing Records (2)

Representation of records:

- Sequence of representations of individual fields.
- Caveat: *alignment restrictions*. The underlying architecture might require that e.g. word-sized quantities start at a word boundary.
- Relaxing this is possible, but may require extra work; e.g., accessing a word byte by byte (four instructions instead of one).

Alignment

- An address a is *n-byte aligned* iff $a \equiv 0 \pmod{n}$.
- A variable/field etc. is n-byte aligned iff it is stored *starting* at an n-byte aligned address.
- To satisfy alignment requirements of its components, a variable of *aggregate type* like a record is often aligned according to the *maximum* alignment of its components.
- *Padding* often needed between variables/components to ensure the alignment requirements of each is met.
Exercise: Representing Records (1)

Assume:

- 1 word = 4 byte = 32 bit Integers
- 1 byte = 8 bit Boolean and Char
- Integer must be word aligned

What is the alignment and size of the type Date?

type Date = record
 y: Integer,
 m: Integer,
 d: Integer
end;

Exercise: Representing Records (2)

What is the alignment and size of the type Details?

type Details = record
 female: Boolean,
 dob: Date,
 status: Char
end;

Given a variable \(x : \) Details, what are the addresses of \(x \).female, \(x \).dob.y, \(x \).dob.m, \(x \).dob.d, \(x \).status relative to \(\text{addr}(x) \) ?

Exercise: Representing Records (3)

Size of Date is 3 32-bit words, size of Details is 1 + 3 + 1 = 5 32-bit words:

<table>
<thead>
<tr>
<th>variable</th>
<th>address</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.female</td>
<td>addr(x)</td>
<td>1 (true)</td>
</tr>
<tr>
<td>x.dob.y</td>
<td>addr(x) + 4</td>
<td>1984</td>
</tr>
<tr>
<td>x.dob.m</td>
<td>addr(x) + 8</td>
<td>7</td>
</tr>
<tr>
<td>x.dob.d</td>
<td>addr(x) + 12</td>
<td>25</td>
</tr>
<tr>
<td>x.status</td>
<td>addr(x) + 16</td>
<td>117 ('u')</td>
</tr>
</tbody>
</table>

Representing Arrays (1)

- Array represented by sequence of representations of individual array elements.
- Two cases:
 - Static Array: Number of elements known at compile time.
 - Dynamic Array: Number of elements determined at run time.
- When accessing array elements, must ensure indices are within bounds.
- Address of element computed from base address of array, index, and size of elements.
Representing Arrays (2)

Static array: required storage space and array bounds known at compile time. Consider:

```plaintext
var x : T[n]
```

- **Required storage**: $n \times \text{sizeof}(T)$
- **Access of $x[i]$**:
 - Verify that $0 \leq i \leq (n - 1)$
 - Compute address a of desired element:

 $$a = \text{addr}(x[0]) + i \times \text{sizeof}(T)$$
 - Fetch/store value at address a.

Representing Arrays (3)

```plaintext
var a: Integer[10] (at [SB + 0])
```

```plaintext
LOADL 7 
LOAD [SB + 0] 
LOADA [SB + 0] 
LOADL 3 
LOAD [ST - 1] 
LOAD [ST - 1] 
LOADL 0 
LOAD [ST - 1] 
LOADL 10
```

Representing Arrays (4)

- **Dynamic array**: size of array not known at compile time.
 - **Indirect representation**: array accessed via a **handle**
 - handle itself has **fixed size**
 - handle contains **pointer** to array proper and the **array bounds**
 - **storage** for array proper allocated **at runtime**
 - index checked by comparing with array bounds stored in the handle.

Representing Disjoint Unions (1)

- A **disjoint union** consists of a **tag** and a **variant** part.
- The value of the tag determines the type of the variant part.
- Mathematically: $T = T_1 + \ldots + T_n$; given tag i, the variant part is a value chosen from type T_i.
- Disjoint unions occur as
 - **variant records** in Pascal and Ada
 - **algebraic data types** in Haskell and ML
 - **object types** in OO languages like Java, C#
Representing Disjoint Unions (2)

- A disjoint union can be represented like a record.
- The value of the tag field determines the layout of the rest of the record.
- If constant size is necessary, size is the maximal size over the various possible layouts.

Representing Disjoint Unions (3)

Some Haskell Examples:

- `data OptInt = NoInt | JustInt Int`
 - The first tag is `NoInt`; no variant part.
 (Which is the same as saying that we have a trivial variant part of the unit type `()`.)
 - The second tag is `JustInt`; the variant part is a single integer field.

Representing Disjoint Unions (4)

- `data Shape
 = Triangle Point Point Point
 | Rectangle Point Point
 | Circle Point Radius`
 - three tags; the variant parts are:
 - Point `triple`
 - Point `pair`
 - Point `and` Radius `pair`.
- `data Colors = Red | Green | Blue`
 - three tags; no variant parts.
 - this is thus just an enumeration type.

Representing Recursive Types (1)

- A recursive type is one defined in terms of itself.
- Examples are linked lists and trees.
- Recursive types are usually represented indirectly since this allows values of arbitrary size to be referenced through a fixed size handle.
Representing Recursive Types (2)

In languages like C or Pascal, the programmer needs to introduce the indirect representation explicitly through pointer types.

Consider the following Pascal declarations:

```pascal
type IntList = ^IntNode;
IntNode = record
  head: Integer;
  tail: IntList
end;
var primes: IntList
```

Uniform Representation (1)

Languages like Haskell and ML adopts a uniform data representation: all values (even “primitive” ones) have an indirect representation (pointer):

- Uniform representation facilitates parametric polymorphism. E.g., the identity function
  ```haskell
  id x = x
  ```
 can be compiled to a single piece of code working for values of any type because all values are represented same way. (Only when the value proper is accessed will differences be apparent and code no longer polymorphic.)

Uniform Representation (2)

- Recursive types supported automatically: “everything is already a pointer”.
- Many OO languages, like Java and C#, adopt a mostly uniform representation:
 - All objects are represented by pointers.
 - Recursive types thus supported.
 - OO-style polymorphism: an object of a class is also an object of any of the superclasses.
 - Layout of “common part” of object uniform to allow superclass method to work on subclass objects.

Example: Haskell Tree Type (1)

This example illustrates

- disjoint union representation
- recursive type representation
- uniform representation (through pointers) of values of all types.
Example: Haskell Tree Type (2)

```haskell
data Tree = Leaf Int
           | Node Tree Tree

aTree = Node (Leaf 1)
        (Node (Leaf 2) (Leaf 3))
```

Example: Haskell Tree Type (3)

```
Node
  Leaf
  Leaf
  Node
```

Example: Haskell Tree Type (4)

<table>
<thead>
<tr>
<th>address</th>
<th>contents</th>
<th>address</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10200008</td>
<td>INT</td>
<td>2E4D0200</td>
<td>Node</td>
</tr>
<tr>
<td>1020000C</td>
<td>1</td>
<td>2E4D0204</td>
<td>2E4D0100</td>
</tr>
<tr>
<td>10200010</td>
<td>INT</td>
<td>2E4D0208</td>
<td>2E4D0108</td>
</tr>
<tr>
<td>10200014</td>
<td>2</td>
<td>2E4D020C</td>
<td>Leaf</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>2E4D0210</td>
<td>10200008</td>
</tr>
<tr>
<td>2E4D0100</td>
<td>Leaf</td>
<td>2E4D0214</td>
<td>Node</td>
</tr>
<tr>
<td>2E4D0104</td>
<td>10200010</td>
<td>2E4D0218</td>
<td>2E4D020C</td>
</tr>
<tr>
<td>2E4D0108</td>
<td>Leaf</td>
<td>2E4D021C</td>
<td>2E4D0200</td>
</tr>
<tr>
<td>2E4D010C</td>
<td>10200018</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Example: Haskell Tree Type (5)

Of course, the tags (Leaf, Node, and INT) must also be represented. Two possibilities:

- A small integer, subject to nonconfusion. E.g.

 \[
 \text{Leaf} = 0, \ \text{Node} = 1, \ \text{INT} = 0
 \]

 (Representing both Leaf and INT with the small integer 0 does not lead to confusion in a statically typed language like Haskell.)

- A pointer to an information table.