
COMP3012/G53CMP: Lecture 1

Administrative Details 2018

and
Introduction to Compiler Construction

Henrik Nilsson

University of Nottingham, UK

COMP3012/G53CMP: Lecture 1 – p.1/37

Finding People and Information (1)

• Henrik Nilsson
Room A08, Computer Science Building
e-mail: nhn@cs.nott.ac.uk

• Teaching Assistants:

www.cs.nott.ac.uk/

Martin Handley ~psxmah

Guerric Chupin ~psxgc4

Jennifer Hackett ~psxjlha

COMP3012/G53CMP: Lecture 1 – p.2/37

Finding People and Information (2)

• Main module web page:
www.cs.nott.ac.uk/~psznhn/G53CMP

• Moodle: moodle.nottingham.ac.uk/
course/view.php?id=68635

• Direct questions concerning lectures and
coursework to the Moodle G53CMP Forum.

Anyone can ask and answer questions, but
you must not post exact solutions to the
coursework.

COMP3012/G53CMP: Lecture 1 – p.3/37

Notes on Lectures 2018

• Two lectures on Thursdays, 16:00–18:00

• Note: A24 first hour, A06 second hour

• Always a break 16:50–17:00

• No lectures on 11 October!

COMP3012/G53CMP: Lecture 1 – p.4/37

Aims and Motivation (1)

Why study Compiler Construction?

• Why did you opt to take this module?

• More generally, what do you think are good
reasons to take this module?

COMP3012/G53CMP: Lecture 1 – p.5/37

Aims and Motivation (2)

Aims: Deepened understanding of:

• how compilers (and interpreters) work and
are constructed

• programming language design and semantics

The former is a great, “hands on”,
“learning-by-doing” way to learn the latter.

COMP3012/G53CMP: Lecture 1 – p.6/37

Aims and Motivation (3)

Why?

The ACM/IEEE 2013 CS Curriculum Guidelines:

COMP3012/G53CMP: Lecture 1 – p.7/37

Aims and Motivation (4)

Moreover: Compilers: “a microcosm of
computer science” [CT04]

• Formal Languages and Automata Theory

• Datastructures and algorithms

• Computer architecture

• Programming language semantics

• Formal reasoning about programs

• Software engineering aspects

Thus, “capstone” module tying everything together.
COMP3012/G53CMP: Lecture 1 – p.8/37

Aims and Motivation (5)

Or, in terms of modules, G53CMP directly draws
from/informs:

• G52LAC: formal language theory, grammars,
(D)FAs

• G51MCS, G52ACE: formal reasoning,
structural induction

• G51PGA, G51PGP: programming,
understanding programming languages

• G51CSF, G51CSA: how computers work

• G54FOP/FPP: programming language theory

COMP3012/G53CMP: Lecture 1 – p.9/37

Aims and Motivation (6)

Jobs? There are plenty of companies out there
with in-house languages or that critically rely on
compiler/interpreter expertise for other reasons.
Some possibly surprising examples:

• Facebook

• Standard Chartered Bank

• Jane Street

COMP3012/G53CMP: Lecture 1 – p.10/37

Learning Outcomes

• Knowledge of language and compiler design,
semantics, key ideas and techniques.

• Experience of compiler construction tools.

• Experience of working with a medium-sized
program.

• Programming in various paradigms

• Capturing design through formal
specifications and deriving implementations
from those.

COMP3012/G53CMP: Lecture 1 – p.11/37

Literature (1)

David A. Watt and Deryck F. Brown.
Programming Language Processors in Java,
Prentice-Hall, 1999.

• Used to be the main book. The lectures partly
follow the structure of this book.

• The coursework was originally based on it.

• Hands-on approach to compiler construction.
Particularly good if you like Java.

• Considers software engineering aspects.

• A bit weak on linking theory with practice.

COMP3012/G53CMP: Lecture 1 – p.12/37

Literature (2)

An alternative: Keith D. Cooper and Linda
Torczon. Engineering a Compiler, Elsevier, 2004.

• Covers more ground in greater depth than
this module.

• Gradually becoming the new main reference
for the module.

For each lecture, there are references to the
relevant chapter(s) of both books (see lecture
overview on the G53CMP web page).

COMP3012/G53CMP: Lecture 1 – p.13/37

Literature (3)

Great supplement: Alfred V Aho, Ravi Sethi,
Jeffrey D. Ullman. Compilers — Principles,
Techniques, and Tools, Addison-Wesley, 1986.
(The “Dragon Book”.)

• Classic reference in the field.

• Covers much more ground in greater depth
than this module.

• A book that will last for years.

• There is a New(-ish) 2007 edition!

COMP3012/G53CMP: Lecture 1 – p.14/37

Literature (4)

Other useful references:

• Benjamin C. Pierce. Types and Programming
Languages.

• Graham Hutton. Programming in Haskell.

Books seem a bit old?

Sure! They focus on core principles of lasting
value that it pays off to learn.

Cf. ACM/IEEE 2013 Curriculum Guidelines

COMP3012/G53CMP: Lecture 1 – p.15/37

Lectures and Handouts

• Come prepared to take notes. There will be
some handouts, but for the most part not.

• All electronic slides, program code, and
other supporting material in electronic form
used during the lectures, will be made
available on the course web page.

• However! The electronic record of the
lectures is neither guaranteed to be complete
nor self-contained!

COMP3012/G53CMP: Lecture 1 – p.16/37

Medium of Instruction

Haskell used as medium of instruction
throughout the module as:

• An ideal language for illustrating and
discussing all aspects of compiler
construction (and similar applications).

• Functional language notation is closely
aligned with mathematical notation and
formalisms used in text books on compilers.

• In practice, often a good choice for implementing
compilers (and much else beside).

COMP3012/G53CMP: Lecture 1 – p.17/37

Assessment

First sit:

• The exam counts for 75 % of the total mark.

• The coursework counts for the remaining 25 %.

• 2 h exam, 3 questions, each worth 25 %.

Bonus! There will be (sub)question(s) on the
exam closely related to the coursework!

Effectively, the weight of the coursework is thus
more like 50 %, except partly examined later.

Resit: 100 % exam

COMP3012/G53CMP: Lecture 1 – p.18/37

Assessment (2)

Why such emphasis on the coursework?

• Compiler construction is best learnt by doing.

• Thus, if you do and understand the coursework,
you will be handsomely rewarded.

• Past experience shows that students who don’t
engage with the coursework struggle to pass.

COMP3012/G53CMP: Lecture 1 – p.19/37

Coursework

You will be given partial implementations of a
compiler for a small language called
MiniTrinagle.

You will be asked to:

• answer theoretical questions related to the
code

• extend the code with new features.

Detailed instructions for the coursework available
from the module web page (Part I: 17 Oct.).
Study these instructions very carefully!

COMP3012/G53CMP: Lecture 1 – p.20/37

Coursework Assessment (1)

• Two parts to the coursework: I and II

• Each part to be solved individually

• Submission for each part:

- Brief written report (hard copy & PDF)

- All source code (electronically)

• For part II, compulsory 10 minute oral
examination in assigned slot during one of the
lab sessions after the submission deadline.

• Catch-up slots only if missed slot with good
cause; personal tutor to request on your behalf.

COMP3012/G53CMP: Lecture 1 – p.21/37

Coursework Assessment (2)

• A number of weighted questions for each part.

• Written answer to each question assessed on

- Correctness (0, 1, or 2 marks)

- Style (0, 1, or 2 marks)

• In the oral examination (part II only), you
explain your answers.

• Your explanations are assessed as follows:

- 2: 100 % of mark for written answer

- 1: 65 % of mark for written answer

- 0: 0 % of mark for written answer
COMP3012/G53CMP: Lecture 1 – p.22/37

Coursework Deadlines

Coursework deadlines:

• Part I: Monday 5 November, 15:00.

• Part II: Monday 3 December, 15:00.

Oral examinations during the lab sessions the
following two Fridays; i.e. 7 and 14 December.

Start early! It is not possible to do this
coursework at the last minute.

First lab session: Friday 19 October,
13:00–15:00.

COMP3012/G53CMP: Lecture 1 – p.23/37

What is a Compiler? (1)

Compilers are program translators:

source

program

target

program
compiler

error diagnostics

Typical example:

• Source language: C

• Target language: x86 assembler

Why? To make it easier to program computers!
COMP3012/G53CMP: Lecture 1 – p.24/37

What is a Compiler? (2)

GCC translates this C program

int main(int argc, char *argv) {

printf("%d\n", argc - 1);

}

into this x86 assembly code (excerpt):

movl 8(%ebp), %eax

decl %eax

subl $8, %esp

pushl %eax

pushl $.LC0

call printf

addl $16, %esp COMP3012/G53CMP: Lecture 1 – p.25/37

Source and Target Languages

Large spectrum of possibilities, for example:

• Source languages:

- (High-level) programming languages

- Modelling languages

- Document description languages

- Database query languages

• Target languages:

- High-level programming language

- Low-level programming language
(assembler or machine code, byte code)

COMP3012/G53CMP: Lecture 1 – p.26/37

Compilers vs. Interpreters

Interpreters are another class of translators:

• Compiler: translates a program once and for
all into target language.

• Interpreter: effectively translates (the used
parts of) a source program every time it is run.

• Techniques like Just-In-Time Compilation
(JIT) blurs this distinction.

• Compilers and interpreters sometimes used
together, e.g. Java: Java compiled into Java
byte code, byte code interpreted by a Java
Virtual Machine (JVM), JVM might use JIT.

COMP3012/G53CMP: Lecture 1 – p.27/37

Inside the Compiler (1)

Traditionally, a compiler is broken down into
several phases:

• Scanner: lexical analysis

• Parser: syntactic analysis

• Checker: contextual analysys (e.g. type
checking)

• Optimizer: code improvement

• Code generator

COMP3012/G53CMP: Lecture 1 – p.28/37

Inside the Compiler (2)

Front

End

sequence of characters

scanner

parser

checker

optimizer/

code

generator

sequence of tokens

Abstract Syntax Tree (AST)

Intermediate Representation (IR), e.g. verified/annotated AST

target code

Lexical Analysis

Syntactic Analysis/Parsing

Contextual Analysis/checking Static Semantics

(e.g. Type Checking)

Optimization and Code Generation

(possibly many steps involving a number

of intermediary representations)

Middle

Section/

Back

End

COMP3012/G53CMP: Lecture 1 – p.29/37

Inside the Compiler (3)

• Lexical Analysis:

- Verify that input character sequence is
lexically valid.

- Group characters into sequence of lexical
symbols, tokens.

- Discard white space and comments
(typically).

COMP3012/G53CMP: Lecture 1 – p.30/37

Inside the Compiler (4)

• Syntactic Analysis/Parsing

- Verify that the input program is
syntactically valid, i.e. conforms to the
Context Free Grammar of the language.

- Determine the program structure.

- Construct a representation of the program
reflecting that structure without
unnecessary details, usually an Abstract
Syntax Tree (AST).

COMP3012/G53CMP: Lecture 1 – p.31/37

Example: TXL into C compiler

Scenario:

• We wish to develop a compiler for TXL: Trivial
eXpression Language.

• To save ourselves some effort, we are going
to compile TXL into C, and then use an
existing C compiler (GCC) to translate into
executable machine code.

COMP3012/G53CMP: Lecture 1 – p.32/37

Informal TXL Syntax and Semantics

Some examples of TXL programs, concrete
syntax, and their intended meaning, semantics:

• 1 + 3

Semantics: 4

• 1 + (3 * (2 + 2))

Semantics: 13

• let x = 3 * 7 in x + 3

Semantics: 24

This is dynamic semantics: what does a
program mean when run?

COMP3012/G53CMP: Lecture 1 – p.33/37

Inside the Compiler (5)

• Contextual Analysis/Checking Static
Semantics:

- Resolve meaning of symbols.

- Report undefined symbols.

- Type checking.

- . . .

COMP3012/G53CMP: Lecture 1 – p.34/37

Informal TXL Syntax and Semantics
• let x = 3 * 7 in let x = x * 3 in

x - 21

Semantics: ???

Some static semantics possibilities:

• Disallow re-definition of entities already in scope.

• Allow nested scopes, decide how to
disambiguate; e.g., closest containing scope.

• Recursive definitions or not? I.e., is the
defined entity in scope in its own definition?

We opt for nesting, closest containing scope, no
recursion. (Dynamic) semantics: 42

COMP3012/G53CMP: Lecture 1 – p.35/37

Informal TXL Syntax and Semantics

• let x = 3 in y + x

Semantics: ???

Some possibilities:

• Insist all variables be defined. The program
can then be statically rejected as
meaningless.

• Catch use of undefined variables
dynamically, making the meaning of the
program undefined.

• Assume some default value, like 0, for
variables that are not explicitly defined.

COMP3012/G53CMP: Lecture 1 – p.36/37

Inside the Compiler (5)

• Optimization:

- Code improvements aiming at making it run
faster and/or use less space, energy, etc.

- Almost always heuristics: cannot
guarantee optimal result.

• Code Generation:

- Output the appropriate sequence of target
language instructions.

- Might involve further low-level
(target-specific) optimization.

COMP3012/G53CMP: Lecture 1 – p.37/37

	Finding People and Information (1)
	Finding People and Information (2)
	Notes on Lectures 2018
	Aims and Motivation (1)
	Aims and Motivation (2)
	Aims and Motivation (3)
	Aims and Motivation (4)
	Aims and Motivation (5)
	Aims and Motivation (6)
	Learning Outcomes
	Literature (1)
	Literature (2)
	Literature (3)
	Literature (4)
	Lectures and Handouts
	Medium of Instruction
	Assessment
	Assessment (2)
	Coursework
	Coursework Assessment (1)
	Coursework Assessment (2)
	Coursework Deadlines
	What is a Compiler? (1)
	What is a Compiler? (2)
	Source and Target Languages
	Compilers vs. Interpreters
	Inside the Compiler (1)
	Inside the Compiler (2)
	Inside the Compiler (3)
	Inside the Compiler (4)
	Example: TXL into C compiler
	Informal TXL Syntax and Semantics
	Inside the Compiler (5)
	Informal TXL Syntax and Semantics
	Informal TXL Syntax and Semantics
	Inside the Compiler (5)

