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Finding People and Information (1)

• Henrik Nilsson
Room A08, Computer Science Building
e-mail: nhn@cs.nott.ac.uk

• Teaching Assistants:

www.cs.nott.ac.uk/

Martin Handley ~psxmah

Guerric Chupin ~psxgc4

Jennifer Hackett ~psxjlha

COMP3012/G53CMP: Lecture 1 – p.2/37

Finding People and Information (2)

• Main module web page:
www.cs.nott.ac.uk/~psznhn/G53CMP

• Moodle: moodle.nottingham.ac.uk/
course/view.php?id=68635

• Direct questions concerning lectures and
coursework to the Moodle G53CMP Forum.

Anyone can ask and answer questions, but
you must not post exact solutions to the
coursework.
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Notes on Lectures 2018

• Two lectures on Thursdays, 16:00–18:00

• Note: A24 first hour, A06 second hour

• Always a break 16:50–17:00

• No lectures on 11 October!
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Aims and Motivation (1)

Why study Compiler Construction?

• Why did you opt to take this module?

• More generally, what do you think are good
reasons to take this module?
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Aims and Motivation (2)

Aims: Deepened understanding of:

• how compilers (and interpreters) work and
are constructed

• programming language design and semantics

The former is a great, “hands on”,
“learning-by-doing” way to learn the latter.
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Aims and Motivation (3)

Why?

The ACM/IEEE 2013 CS Curriculum Guidelines:
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Aims and Motivation (4)

Moreover: Compilers: “a microcosm of
computer science” [CT04]

• Formal Languages and Automata Theory

• Datastructures and algorithms

• Computer architecture

• Programming language semantics

• Formal reasoning about programs

• Software engineering aspects

Thus, “capstone” module tying everything together.
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Aims and Motivation (5)

Or, in terms of modules, G53CMP directly draws
from/informs:

• G52LAC: formal language theory, grammars,
(D)FAs

• G51MCS, G52ACE: formal reasoning,
structural induction

• G51PGA, G51PGP: programming,
understanding programming languages

• G51CSF, G51CSA: how computers work

• G54FOP/FPP: programming language theory
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Aims and Motivation (6)

Jobs? There are plenty of companies out there
with in-house languages or that critically rely on
compiler/interpreter expertise for other reasons.
Some possibly surprising examples:

• Facebook

• Standard Chartered Bank

• Jane Street
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Learning Outcomes

• Knowledge of language and compiler design,
semantics, key ideas and techniques.

• Experience of compiler construction tools.

• Experience of working with a medium-sized
program.

• Programming in various paradigms

• Capturing design through formal
specifications and deriving implementations
from those.
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Literature (1)

David A. Watt and Deryck F. Brown.
Programming Language Processors in Java,
Prentice-Hall, 1999.

• Used to be the main book. The lectures partly
follow the structure of this book.

• The coursework was originally based on it.

• Hands-on approach to compiler construction.
Particularly good if you like Java.

• Considers software engineering aspects.

• A bit weak on linking theory with practice.
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Literature (2)

An alternative: Keith D. Cooper and Linda
Torczon. Engineering a Compiler, Elsevier, 2004.

• Covers more ground in greater depth than
this module.

• Gradually becoming the new main reference
for the module.

For each lecture, there are references to the
relevant chapter(s) of both books (see lecture
overview on the G53CMP web page).
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Literature (3)

Great supplement: Alfred V Aho, Ravi Sethi,
Jeffrey D. Ullman. Compilers — Principles,
Techniques, and Tools, Addison-Wesley, 1986.
(The “Dragon Book”.)

• Classic reference in the field.

• Covers much more ground in greater depth
than this module.

• A book that will last for years.

• There is a New(-ish) 2007 edition!

COMP3012/G53CMP: Lecture 1 – p.14/37

Literature (4)

Other useful references:

• Benjamin C. Pierce. Types and Programming
Languages.

• Graham Hutton. Programming in Haskell.

Books seem a bit old?

Sure! They focus on core principles of lasting
value that it pays off to learn.

Cf. ACM/IEEE 2013 Curriculum Guidelines
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Lectures and Handouts

• Come prepared to take notes. There will be
some handouts, but for the most part not.

• All electronic slides, program code, and
other supporting material in electronic form
used during the lectures, will be made
available on the course web page.

• However! The electronic record of the
lectures is neither guaranteed to be complete
nor self-contained!
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Medium of Instruction

Haskell used as medium of instruction
throughout the module as:

• An ideal language for illustrating and
discussing all aspects of compiler
construction (and similar applications).

• Functional language notation is closely
aligned with mathematical notation and
formalisms used in text books on compilers.

• In practice, often a good choice for implementing
compilers (and much else beside).
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Assessment

First sit:

• The exam counts for 75 % of the total mark.

• The coursework counts for the remaining 25 %.

• 2 h exam, 3 questions, each worth 25 %.

Bonus! There will be (sub)question(s) on the
exam closely related to the coursework!

Effectively, the weight of the coursework is thus
more like 50 %, except partly examined later.

Resit: 100 % exam
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Assessment (2)

Why such emphasis on the coursework?

• Compiler construction is best learnt by doing.

• Thus, if you do and understand the coursework,
you will be handsomely rewarded.

• Past experience shows that students who don’t
engage with the coursework struggle to pass.
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Coursework

You will be given partial implementations of a
compiler for a small language called
MiniTrinagle.

You will be asked to:

• answer theoretical questions related to the
code

• extend the code with new features.

Detailed instructions for the coursework available
from the module web page (Part I: 17 Oct.).
Study these instructions very carefully!

COMP3012/G53CMP: Lecture 1 – p.20/37



Coursework Assessment (1)

• Two parts to the coursework: I and II

• Each part to be solved individually

• Submission for each part:

- Brief written report (hard copy & PDF)

- All source code (electronically)

• For part II, compulsory 10 minute oral
examination in assigned slot during one of the
lab sessions after the submission deadline.

• Catch-up slots only if missed slot with good
cause; personal tutor to request on your behalf.
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Coursework Assessment (2)

• A number of weighted questions for each part.

• Written answer to each question assessed on

- Correctness (0, 1, or 2 marks)

- Style (0, 1, or 2 marks)

• In the oral examination (part II only), you
explain your answers.

• Your explanations are assessed as follows:

- 2: 100 % of mark for written answer

- 1: 65 % of mark for written answer

- 0: 0 % of mark for written answer
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Coursework Deadlines

Coursework deadlines:

• Part I: Monday 5 November, 15:00.

• Part II: Monday 3 December, 15:00.

Oral examinations during the lab sessions the
following two Fridays; i.e. 7 and 14 December.

Start early! It is not possible to do this
coursework at the last minute.

First lab session: Friday 19 October,
13:00–15:00.
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What is a Compiler? (1)

Compilers are program translators:

source

program

target

program
compiler

error diagnostics

Typical example:

• Source language: C

• Target language: x86 assembler

Why? To make it easier to program computers!
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What is a Compiler? (2)

GCC translates this C program

int main(int argc, char *argv) {

printf("%d\n", argc - 1);

}

into this x86 assembly code (excerpt):

movl 8(%ebp), %eax

decl %eax

subl $8, %esp

pushl %eax

pushl $.LC0

call printf

addl $16, %esp COMP3012/G53CMP: Lecture 1 – p.25/37

Source and Target Languages

Large spectrum of possibilities, for example:

• Source languages:

- (High-level) programming languages

- Modelling languages

- Document description languages

- Database query languages

• Target languages:

- High-level programming language

- Low-level programming language
(assembler or machine code, byte code)
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Compilers vs. Interpreters

Interpreters are another class of translators:

• Compiler: translates a program once and for
all into target language.

• Interpreter: effectively translates (the used
parts of) a source program every time it is run.

• Techniques like Just-In-Time Compilation
(JIT) blurs this distinction.

• Compilers and interpreters sometimes used
together, e.g. Java: Java compiled into Java
byte code, byte code interpreted by a Java
Virtual Machine (JVM), JVM might use JIT.
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Inside the Compiler (1)

Traditionally, a compiler is broken down into
several phases:

• Scanner: lexical analysis

• Parser: syntactic analysis

• Checker: contextual analysys (e.g. type
checking)

• Optimizer: code improvement

• Code generator
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Inside the Compiler (2)

Front

End

sequence of characters

scanner

parser

checker

optimizer/

code

generator

sequence of tokens

Abstract Syntax Tree (AST)

Intermediate Representation (IR), e.g. verified/annotated AST

target code

Lexical Analysis

Syntactic Analysis/Parsing

Contextual Analysis/checking Static Semantics

(e.g. Type Checking)

Optimization and Code Generation

(possibly many steps involving a number

of intermediary representations)

Middle

Section/

Back

End
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Inside the Compiler (3)

• Lexical Analysis:

- Verify that input character sequence is
lexically valid.

- Group characters into sequence of lexical
symbols, tokens.

- Discard white space and comments
(typically).
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Inside the Compiler (4)

• Syntactic Analysis/Parsing

- Verify that the input program is
syntactically valid, i.e. conforms to the
Context Free Grammar of the language.

- Determine the program structure.

- Construct a representation of the program
reflecting that structure without
unnecessary details, usually an Abstract
Syntax Tree (AST).
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Example: TXL into C compiler

Scenario:

• We wish to develop a compiler for TXL: Trivial
eXpression Language.

• To save ourselves some effort, we are going
to compile TXL into C, and then use an
existing C compiler (GCC) to translate into
executable machine code.
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Informal TXL Syntax and Semantics

Some examples of TXL programs, concrete
syntax, and their intended meaning, semantics:

• 1 + 3

Semantics: 4

• 1 + (3 * (2 + 2))

Semantics: 13

• let x = 3 * 7 in x + 3

Semantics: 24

This is dynamic semantics: what does a
program mean when run?
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Inside the Compiler (5)

• Contextual Analysis/Checking Static
Semantics:

- Resolve meaning of symbols.

- Report undefined symbols.

- Type checking.

- . . .
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Informal TXL Syntax and Semantics
• let x = 3 * 7 in let x = x * 3 in

x - 21

Semantics: ???

Some static semantics possibilities:

• Disallow re-definition of entities already in scope.

• Allow nested scopes, decide how to
disambiguate; e.g., closest containing scope.

• Recursive definitions or not? I.e., is the
defined entity in scope in its own definition?

We opt for nesting, closest containing scope, no
recursion. (Dynamic) semantics: 42
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Informal TXL Syntax and Semantics

• let x = 3 in y + x

Semantics: ???

Some possibilities:

• Insist all variables be defined. The program
can then be statically rejected as
meaningless.

• Catch use of undefined variables
dynamically, making the meaning of the
program undefined.

• Assume some default value, like 0, for
variables that are not explicitly defined.
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Inside the Compiler (5)

• Optimization:

- Code improvements aiming at making it run
faster and/or use less space, energy, etc.

- Almost always heuristics: cannot
guarantee optimal result.

• Code Generation:

- Output the appropriate sequence of target
language instructions.

- Might involve further low-level
(target-specific) optimization.
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