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This Lecture

• Programming language definition basics.

• Backus-Naur Form (BNF) and Extended BNF
(EBNF)

• Concrete Syntax

- Lexical syntax for MiniTriangle

- Context-free syntax for MiniTriangle

• Abstract Syntax

- Abstract syntax for MiniTriangle

• Representing Abstract Syntax Trees (ASTs)
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Syntax and Semantics (1)

The notions of Syntax and Semantics are
central to any discourse on languages. Focusing
on programming languages:

• Syntax: the form of programs

- Concrete Syntax (or Surface Syntax):
What programs “look like”.
• Usually strings of characters or symbols.
• Some languages have graphical syntax.

- Abstract Syntax: trees representing the
essential structure of syntactically valid
programs.
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Syntax and Semantics (2)

• Semantics: the meaning of programs

- Static Semantics: the static, at
compile-time, meaning of programs and
program fragments.
Typically aspects like scope, types.

- Dynamic Semantics: what programs and
program fragments mean (or do) when
executed, at run-time.
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Defining Programming Languages (1)

• In order to develop a compiler (or other
language processor):

- the Source Language must be defined
• syntax
• semantics

- the Target Language must be defined
• syntax
• semantics

• Language definitions (aka specifications)
can be formal or informal. Usually they are
somewhere in between.
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Defining Programming Languages (2)

Why is it important that the source and target
languages are precisely defined?

• The source language syntax must be known
to design the scanner and parser properly.

• The target language syntax must be known to
generate syntactically correct target code.

• The semantics of both the source and target
language must be known to ensure that the
translation preserves the meaning of source
programs; i.e. compiler correctness.

COMP3012/G53CMP: Lecture 2 – p.6/37

Object Language and Meta Language

In any language definition, informal or formal, a
careful distinction must be made between

• the Object Language: the language being
defined

• the Meta Language: the language of the
definition itself.

Moreover, the semantics of the meta language
must be well understood!

COMP3012/G53CMP: Lecture 2 – p.7/37

Informal Specifications

• In an informal specification, the meta language
is a natural language such as English.

• Most programming languages are defined
more or less informally.

• “Informal” does not mean “lack of rigour”: it is
possible to be precise also in a natural
language.

• An example of a well-written, predominantly
informal language specification is that of Java:
http://java.sun.com/docs/books/jls

(See e.g. Third Edition, Section 14.9.)
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Formal Specifications

A Formal Specification is mathematically
precise. Usually, a Formal Metalanguage is
used; e.g.:

• EBNF for specifying context-free syntax.
(Int’l standard: ISO/IEC 14977:1996(E))

• inference rules and logic for specifying
static and/or dynamic semantics

• denotational semantics for specifying
dynamic semantics.
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Context-Free Grammars

A Context-Free Grammar (CFG) formally
describes a Context-Free Languages (CFL):

• The CFLs capture common programming
language ideas such as

- nested structure

- balanced parentheses

- matching keywords like begin and end.

• Most “reasonable” CFLs can be recognised
by a simple machine: a deterministic
pushdown automaton.
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CFG Notation (1)

We will give CFGs by stating the productions in
one of two styles:

• Mathematical style (or “G52LAC style”):

- Used for: small, abstract examples; at
meta level when talking about grammars.

- Simple naming conventions used to
distinguish terminals and non-terminals:
• nonterminals: uppercase letters, like A, B, S
• terminals: lowercase letters or digits, like
a, b, 3

- Start symbol usually called S.
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CFG Notation (2)

• Programming Language Specification style:

- Used for larger, more realistic examples.

- Typographical conventions used to
distinguish terminals and non-terminals:
• nonterminals are written like this
• terminals are written like this
• terminals with variable spelling and

special symbols are written like this

- The start symbol is often implied by the
context.
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CFG Notation (3)

For example:

AssignStmt → Identifier := Expr

Here,

• AssignStmt and Expr are nonterminals

• := is a terminal

• Identifier is also a terminal, but its possible

spellings are defined elsewhere (usually by a
lexical grammar).
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BNF and Extended BNF

The CFGs we have seen so far have (essentially)
been expressed in Backus-Naur Form (BNF).

Extended BNF (EBNF) is a more convenient
way of describing CFGs than is BNF.

• Additional EBNF constructs:

- parentheses for grouping

- | for alternatives within parentheses

- ∗ for iteration (W&B’s notation).

• EBNF is no more powerful than BNF: any
EBNF grammar can be transformed into BNF.
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EBNF: Example

The following EBNF grammar

Block → begin (Decl | Stmt)∗ end

(where Decl and Stmt are defined elsewhere) is
equivalent to the following BNF grammar:

Block → begin BlockRec end

BlockRec → ǫ | BlockRec BlockAlts

BlockAlts → Decl | Stmt

Thus we see that EBNF can be quite a bit more
concise and readable than plain BNF.
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EBNF: ISO Notation

Watt & Brown use their own EBNF variant.

The more common variant is the ISO
(International Organization for Standardization)
version (ISO/IEC 14977:1996):

ISO W&B

{ A } A∗

[ A ] (A | ǫ)
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MiniTriangle

The source language in the coursework is called
MiniTriangle (derived from Watt & Brown).

Example:

let

var y: Integer := 0

in

begin

y := y + 1;

putint(y)

end
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Concrete Syntax

The Concrete Syntax, or surface syntax, of a
language is usually defined at two levels:

• The Lexical syntax: the syntax of

- language symbols or tokens

- white space

- comments

• The Context-Free syntax.
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MiniTriangle Lexical Syntax (1)

Program → (Token | Separator )∗

Token → Keyword | Identifier | IntegerLiteral | Operator

| , | ; | : | := | = | ( | ) | eot

Keyword → begin | const | do | else | end | if | in

| let | then | var | while

Identifier → Letter | Identifier Letter | Identifier Digit

except Keyword

IntegerLiteral → Digit | IntegerLiteral Digit

Operator → + | - | * | / | < | <= | == | != | >= | > | && | || | !

Separator → Comment | space | eol

Comment → // (any character except eol )∗ eol
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MiniTriangle Lexical Syntax (2)

Notes:

• Essentially a (left-)linear grammar; i.e, the
lexical syntax specifies a regular language.

• Not completely formal (e.g. the use of “except”
for excluding keywords from identifiers).

• Note! Each individual character of a terminal
is actually a terminal symbol! I.e., really:

Keyword → b e g i n | c o n s t | . . .

• Special characters are written like this .
Note! They are single terminal symbols!
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MiniTriangle: Tokens

Some valid MiniTriangle tokens:

• const3 (Identifier)

• const (Keyword)

• 42 (Integer-Literal)

• + (Operator)

Q: Is const3 really a single token?
The grammar is ambiguous!

A: An implicit “maximal munch rule” used to
disambiguate!
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MiniTriangle Context-Free Syntax (1)

(Small version: other (extended) versions later.)

Program → Command

Commands → Command

| Command ; Commands

Command → VarExpression := Expression

| VarExpression ( Expressions )

| if Expression then Command else Command

| while Expression do Command

| let Declarations in Command

| begin Commands end
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MiniTriangle Context-Free Syntax (2)

Expressions → Expression

| Expression , Expressions

Expression → PrimaryExpression

| Expression Operator PrimaryExpression

PrimaryExpression → IntegerLiteral

| VarExpression

| Operator PrimaryExpression

| ( Expression )

VarExpression → Identifier
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MiniTriangle Context-Free Syntax (3)

Declarations → Declaration

| Declaration ; Declarations

Declaration → const Identifier : TypeDenoter = Expression

| var Identifier : TypeDenoter

| var Identifier : TypeDenoter := Expression

TypeDenoter → Identifier
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Another MiniTriangle Program

The following is a syntactically valid
MiniTriangle program (slightly changed from
earlier to save some space):

let

var y: Integer

in

begin

y := y + 1;

putint(y)

end
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Parse Tree for the Program
Program

Command

let Declarations in

CommandsDeclaration

var Identifier : TypeDenoter

Integer

y Identifier

Identifier

y

:= Expression

Expression Operator PrimaryExpression

+PrimaryExpression

Identifier

y

IntegerLiteral

1

Command

begin end

Command

VarExpression

Commands

Command

VarExpression ( )Expressions

ExpressionIdentifier

putint

VarExpression

Identifier

y

;

VarExpression PrimaryExpression
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Why a Lexical Grammar? (1)

Together, the lexical grammar and the
context-free grammar specify the concrete
syntax.

In our case, both grammars are expressed in
(E)BNF and looks similar.

So . . .

• Why not join them?

• Why not do away with scanning, and just do
parsing?
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Why a Lexical Grammar? (2)

Answer:

• Simplicity: dealing with white space and
comments in the context free grammar
becomes extremely complicated. (Try it!)

• Efficiency:

- Working on classified groups of characters
(tokens) facilitates parsing: may be
possible to use a simpler parsing algorithm.

- Grouping and classifying characters by as
simple means as possible increases
efficiency.
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MiniTriangle Abstract Syntax (1)

This grammar specifies the phrase structure of
MiniTriangle. In addition, it gives node labels to
be used when drawing Abstract Syntax Trees.

Program → Command Program

Command → Expression := Expression CmdAssign

| Expression ( Expression∗ ) CmdCall

| Command∗ CmdSeq

| if Expression then Command CmdIf

else Command

| while Expression do Command CmdWhile

| let Declaration∗ in Command CmdLet
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MiniTriangle Abstract Syntax (2)

Expression → IntegerLiteral ExpLitInt

| Name ExpVar

| Expression ( Expression∗ ) ExpApp

Declaration → const Name : TypeDenoter DeclConst

= Expression

| var Name : TypeDenoter DeclVar

(:= Expression | ǫ)

TypeDenoter → Name TDBaseType

Note: Keywords and other fixed-spelling terminals serve

only to make the connection with the concrete syntax clear.

Identifier ⊆ Name, Operator ⊆ Name
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Abstract Syntax Tree for the Program

Program

CmdLet

DeclVar

CmdAssignName TDBaseType

Integer

y Name

Name

y

ExpApp

ExpVar

Name

ExpLitInt

+

Name

y

IntegerLiteral

1

CmdSeq

ExpVar

ExpVar

CmdCall

ExpVar

Name

putint

Name

y

ExpVar

Note: fixed-spelling terminals are omitted
because they are implied by the node labels.
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Concrete vs. Abstract Syntax

Key points:

• Concrete syntax: string (generated from the
lexical and context-free grammars)

• Abstract syntax: tree

(Ways to describe graphical concrete syntax are
more varied.)
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Concrete AST Representation

Mapping of abstract syntax to algebraic datatypes:

• Each non-terminal is mapped to a type.

• Each label is mapped to a constructor for
the corresponding type.

• The constructors get one argument for each
non-terminal and “variable” terminal in the
RHS of the production.

• Sequences are represented by lists.

• Options are represented by values of type Maybe.

• “Literal” terminals are ignored.
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Concrete AST Representation (2)

data Command

= CmdAssign Expression Expression

| CmdCall Expression [Expression]

| CmdSeq [Command]

| CmdIf Expression Command Command

| CmdWhile Expression Command

| CmdLet [Declaration] Command
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Concrete AST Representation (3)

data Expression

= ExpLitInt Integer

| ExpVar Name

| ExpApp Expression [Expression]

data Declaration

= DeclConst Name TypeDenoter Expression

| DeclVar Name TypeDenoter (Maybe Expression)
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Concrete AST Representation (4)

In fact, the lab code uses labelled fields:

data Command

= CmdAssign {

caVar :: Expression,

caVal :: Expression,

cmdSrcPos :: SrcPos

}

| CmdCall {

ccProc :: Expression,

ccArgs :: [Expression],

cmdSrcPos :: SrcPos

}
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Haskell Representation of the Program

CmdLet

(DeclVar "y" (TDBaseName "Integer") Nothing)

(CmdSeq [CmdAssign (ExpVar "y")

(ExpApp (ExpVar "+")

[ExpVar "y",

ExpLitInt 1]),

CmdCall (ExpVar "putint")

[ExpVar "y"]])

Assumption:

type Name = String
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