
COMP3012/G53CMP: Lecture 2
Defining Programming Languages

Henrik Nilsson

University of Nottingham, UK

COMP3012/G53CMP: Lecture 2 – p.1/37

This Lecture

• Programming language definition basics.

• Backus-Naur Form (BNF) and Extended BNF
(EBNF)

• Concrete Syntax

- Lexical syntax for MiniTriangle

- Context-free syntax for MiniTriangle

• Abstract Syntax

- Abstract syntax for MiniTriangle

• Representing Abstract Syntax Trees (ASTs)

COMP3012/G53CMP: Lecture 2 – p.2/37

Syntax and Semantics (1)

The notions of Syntax and Semantics are
central to any discourse on languages. Focusing
on programming languages:

• Syntax: the form of programs

- Concrete Syntax (or Surface Syntax):
What programs “look like”.
• Usually strings of characters or symbols.
• Some languages have graphical syntax.

- Abstract Syntax: trees representing the
essential structure of syntactically valid
programs.

COMP3012/G53CMP: Lecture 2 – p.3/37

Syntax and Semantics (2)

• Semantics: the meaning of programs

- Static Semantics: the static, at
compile-time, meaning of programs and
program fragments.
Typically aspects like scope, types.

- Dynamic Semantics: what programs and
program fragments mean (or do) when
executed, at run-time.

COMP3012/G53CMP: Lecture 2 – p.4/37

Defining Programming Languages (1)

• In order to develop a compiler (or other
language processor):

- the Source Language must be defined
• syntax
• semantics

- the Target Language must be defined
• syntax
• semantics

• Language definitions (aka specifications)
can be formal or informal. Usually they are
somewhere in between.

COMP3012/G53CMP: Lecture 2 – p.5/37

Defining Programming Languages (2)

Why is it important that the source and target
languages are precisely defined?

• The source language syntax must be known
to design the scanner and parser properly.

• The target language syntax must be known to
generate syntactically correct target code.

• The semantics of both the source and target
language must be known to ensure that the
translation preserves the meaning of source
programs; i.e. compiler correctness.

COMP3012/G53CMP: Lecture 2 – p.6/37

Object Language and Meta Language

In any language definition, informal or formal, a
careful distinction must be made between

• the Object Language: the language being
defined

• the Meta Language: the language of the
definition itself.

Moreover, the semantics of the meta language
must be well understood!

COMP3012/G53CMP: Lecture 2 – p.7/37

Informal Specifications

• In an informal specification, the meta language
is a natural language such as English.

• Most programming languages are defined
more or less informally.

• “Informal” does not mean “lack of rigour”: it is
possible to be precise also in a natural
language.

• An example of a well-written, predominantly
informal language specification is that of Java:
http://java.sun.com/docs/books/jls

(See e.g. Third Edition, Section 14.9.)

COMP3012/G53CMP: Lecture 2 – p.8/37

Formal Specifications

A Formal Specification is mathematically
precise. Usually, a Formal Metalanguage is
used; e.g.:

• EBNF for specifying context-free syntax.
(Int’l standard: ISO/IEC 14977:1996(E))

• inference rules and logic for specifying
static and/or dynamic semantics

• denotational semantics for specifying
dynamic semantics.

COMP3012/G53CMP: Lecture 2 – p.9/37

Context-Free Grammars

A Context-Free Grammar (CFG) formally
describes a Context-Free Languages (CFL):

• The CFLs capture common programming
language ideas such as

- nested structure

- balanced parentheses

- matching keywords like begin and end.

• Most “reasonable” CFLs can be recognised
by a simple machine: a deterministic
pushdown automaton.

COMP3012/G53CMP: Lecture 2 – p.10/37

CFG Notation (1)

We will give CFGs by stating the productions in
one of two styles:

• Mathematical style (or “G52LAC style”):

- Used for: small, abstract examples; at
meta level when talking about grammars.

- Simple naming conventions used to
distinguish terminals and non-terminals:
• nonterminals: uppercase letters, like A, B, S
• terminals: lowercase letters or digits, like
a, b, 3

- Start symbol usually called S.

COMP3012/G53CMP: Lecture 2 – p.11/37

CFG Notation (2)

• Programming Language Specification style:

- Used for larger, more realistic examples.

- Typographical conventions used to
distinguish terminals and non-terminals:
• nonterminals are written like this
• terminals are written like this
• terminals with variable spelling and

special symbols are written like this

- The start symbol is often implied by the
context.

COMP3012/G53CMP: Lecture 2 – p.12/37

CFG Notation (3)

For example:

AssignStmt → Identifier := Expr

Here,

• AssignStmt and Expr are nonterminals

• := is a terminal

• Identifier is also a terminal, but its possible

spellings are defined elsewhere (usually by a
lexical grammar).

COMP3012/G53CMP: Lecture 2 – p.13/37

BNF and Extended BNF

The CFGs we have seen so far have (essentially)
been expressed in Backus-Naur Form (BNF).

Extended BNF (EBNF) is a more convenient
way of describing CFGs than is BNF.

• Additional EBNF constructs:

- parentheses for grouping

- | for alternatives within parentheses

- ∗ for iteration (W&B’s notation).

• EBNF is no more powerful than BNF: any
EBNF grammar can be transformed into BNF.

COMP3012/G53CMP: Lecture 2 – p.14/37

EBNF: Example

The following EBNF grammar

Block → begin (Decl | Stmt)∗ end

(where Decl and Stmt are defined elsewhere) is
equivalent to the following BNF grammar:

Block → begin BlockRec end

BlockRec → ǫ | BlockRec BlockAlts

BlockAlts → Decl | Stmt

Thus we see that EBNF can be quite a bit more
concise and readable than plain BNF.

COMP3012/G53CMP: Lecture 2 – p.15/37

EBNF: ISO Notation

Watt & Brown use their own EBNF variant.

The more common variant is the ISO
(International Organization for Standardization)
version (ISO/IEC 14977:1996):

ISO W&B

{ A } A∗

[A] (A | ǫ)

COMP3012/G53CMP: Lecture 2 – p.16/37

MiniTriangle

The source language in the coursework is called
MiniTriangle (derived from Watt & Brown).

Example:

let

var y: Integer := 0

in

begin

y := y + 1;

putint(y)

end

COMP3012/G53CMP: Lecture 2 – p.17/37

Concrete Syntax

The Concrete Syntax, or surface syntax, of a
language is usually defined at two levels:

• The Lexical syntax: the syntax of

- language symbols or tokens

- white space

- comments

• The Context-Free syntax.

COMP3012/G53CMP: Lecture 2 – p.18/37

MiniTriangle Lexical Syntax (1)

Program → (Token | Separator)∗

Token → Keyword | Identifier | IntegerLiteral | Operator

| , | ; | : | := | = | (|) | eot

Keyword → begin | const | do | else | end | if | in

| let | then | var | while

Identifier → Letter | Identifier Letter | Identifier Digit

except Keyword

IntegerLiteral → Digit | IntegerLiteral Digit

Operator → + | - | * | / | < | <= | == | != | >= | > | && | || | !

Separator → Comment | space | eol

Comment → // (any character except eol)∗ eol
COMP3012/G53CMP: Lecture 2 – p.19/37

MiniTriangle Lexical Syntax (2)

Notes:

• Essentially a (left-)linear grammar; i.e, the
lexical syntax specifies a regular language.

• Not completely formal (e.g. the use of “except”
for excluding keywords from identifiers).

• Note! Each individual character of a terminal
is actually a terminal symbol! I.e., really:

Keyword → b e g i n | c o n s t | . . .

• Special characters are written like this .
Note! They are single terminal symbols!

COMP3012/G53CMP: Lecture 2 – p.20/37

MiniTriangle: Tokens

Some valid MiniTriangle tokens:

• const3 (Identifier)

• const (Keyword)

• 42 (Integer-Literal)

• + (Operator)

Q: Is const3 really a single token?
The grammar is ambiguous!

A: An implicit “maximal munch rule” used to
disambiguate!

COMP3012/G53CMP: Lecture 2 – p.21/37

MiniTriangle Context-Free Syntax (1)

(Small version: other (extended) versions later.)

Program → Command

Commands → Command

| Command ; Commands

Command → VarExpression := Expression

| VarExpression (Expressions)

| if Expression then Command else Command

| while Expression do Command

| let Declarations in Command

| begin Commands end

COMP3012/G53CMP: Lecture 2 – p.22/37

MiniTriangle Context-Free Syntax (2)

Expressions → Expression

| Expression , Expressions

Expression → PrimaryExpression

| Expression Operator PrimaryExpression

PrimaryExpression → IntegerLiteral

| VarExpression

| Operator PrimaryExpression

| (Expression)

VarExpression → Identifier

COMP3012/G53CMP: Lecture 2 – p.23/37

MiniTriangle Context-Free Syntax (3)

Declarations → Declaration

| Declaration ; Declarations

Declaration → const Identifier : TypeDenoter = Expression

| var Identifier : TypeDenoter

| var Identifier : TypeDenoter := Expression

TypeDenoter → Identifier

COMP3012/G53CMP: Lecture 2 – p.24/37

Another MiniTriangle Program

The following is a syntactically valid
MiniTriangle program (slightly changed from
earlier to save some space):

let

var y: Integer

in

begin

y := y + 1;

putint(y)

end

COMP3012/G53CMP: Lecture 2 – p.25/37

Parse Tree for the Program
Program

Command

let Declarations in

CommandsDeclaration

var Identifier : TypeDenoter

Integer

y Identifier

Identifier

y

:= Expression

Expression Operator PrimaryExpression

+PrimaryExpression

Identifier

y

IntegerLiteral

1

Command

begin end

Command

VarExpression

Commands

Command

VarExpression ()Expressions

ExpressionIdentifier

putint

VarExpression

Identifier

y

;

VarExpression PrimaryExpression

COMP3012/G53CMP: Lecture 2 – p.26/37

Why a Lexical Grammar? (1)

Together, the lexical grammar and the
context-free grammar specify the concrete
syntax.

In our case, both grammars are expressed in
(E)BNF and looks similar.

So . . .

• Why not join them?

• Why not do away with scanning, and just do
parsing?

COMP3012/G53CMP: Lecture 2 – p.27/37

Why a Lexical Grammar? (2)

Answer:

• Simplicity: dealing with white space and
comments in the context free grammar
becomes extremely complicated. (Try it!)

• Efficiency:

- Working on classified groups of characters
(tokens) facilitates parsing: may be
possible to use a simpler parsing algorithm.

- Grouping and classifying characters by as
simple means as possible increases
efficiency.

COMP3012/G53CMP: Lecture 2 – p.28/37

MiniTriangle Abstract Syntax (1)

This grammar specifies the phrase structure of
MiniTriangle. In addition, it gives node labels to
be used when drawing Abstract Syntax Trees.

Program → Command Program

Command → Expression := Expression CmdAssign

| Expression (Expression∗) CmdCall

| Command∗ CmdSeq

| if Expression then Command CmdIf

else Command

| while Expression do Command CmdWhile

| let Declaration∗ in Command CmdLet

COMP3012/G53CMP: Lecture 2 – p.29/37

MiniTriangle Abstract Syntax (2)

Expression → IntegerLiteral ExpLitInt

| Name ExpVar

| Expression (Expression∗) ExpApp

Declaration → const Name : TypeDenoter DeclConst

= Expression

| var Name : TypeDenoter DeclVar

(:= Expression | ǫ)

TypeDenoter → Name TDBaseType

Note: Keywords and other fixed-spelling terminals serve

only to make the connection with the concrete syntax clear.

Identifier ⊆ Name, Operator ⊆ Name

COMP3012/G53CMP: Lecture 2 – p.30/37

Abstract Syntax Tree for the Program

Program

CmdLet

DeclVar

CmdAssignName TDBaseType

Integer

y Name

Name

y

ExpApp

ExpVar

Name

ExpLitInt

+

Name

y

IntegerLiteral

1

CmdSeq

ExpVar

ExpVar

CmdCall

ExpVar

Name

putint

Name

y

ExpVar

Note: fixed-spelling terminals are omitted
because they are implied by the node labels.

COMP3012/G53CMP: Lecture 2 – p.31/37

Concrete vs. Abstract Syntax

Key points:

• Concrete syntax: string (generated from the
lexical and context-free grammars)

• Abstract syntax: tree

(Ways to describe graphical concrete syntax are
more varied.)

COMP3012/G53CMP: Lecture 2 – p.32/37

Concrete AST Representation

Mapping of abstract syntax to algebraic datatypes:

• Each non-terminal is mapped to a type.

• Each label is mapped to a constructor for
the corresponding type.

• The constructors get one argument for each
non-terminal and “variable” terminal in the
RHS of the production.

• Sequences are represented by lists.

• Options are represented by values of type Maybe.

• “Literal” terminals are ignored.
COMP3012/G53CMP: Lecture 2 – p.33/37

Concrete AST Representation (2)

data Command

= CmdAssign Expression Expression

| CmdCall Expression [Expression]

| CmdSeq [Command]

| CmdIf Expression Command Command

| CmdWhile Expression Command

| CmdLet [Declaration] Command

COMP3012/G53CMP: Lecture 2 – p.34/37

Concrete AST Representation (3)

data Expression

= ExpLitInt Integer

| ExpVar Name

| ExpApp Expression [Expression]

data Declaration

= DeclConst Name TypeDenoter Expression

| DeclVar Name TypeDenoter (Maybe Expression)

COMP3012/G53CMP: Lecture 2 – p.35/37

Concrete AST Representation (4)

In fact, the lab code uses labelled fields:

data Command

= CmdAssign {

caVar :: Expression,

caVal :: Expression,

cmdSrcPos :: SrcPos

}

| CmdCall {

ccProc :: Expression,

ccArgs :: [Expression],

cmdSrcPos :: SrcPos

}

... COMP3012/G53CMP: Lecture 2 – p.36/37

Haskell Representation of the Program

CmdLet

(DeclVar "y" (TDBaseName "Integer") Nothing)

(CmdSeq [CmdAssign (ExpVar "y")

(ExpApp (ExpVar "+")

[ExpVar "y",

ExpLitInt 1]),

CmdCall (ExpVar "putint")

[ExpVar "y"]])

Assumption:

type Name = String

COMP3012/G53CMP: Lecture 2 – p.37/37

	This Lecture
	Syntax and Semantics (1)
	Syntax and Semantics (2)
	Defining Programming Languages (1)
	Defining Programming Languages (2)
	Object Language and Meta Language
	Informal Specifications
	Formal Specifications
	Context-Free Grammars
	CFG Notation (1)
	CFG Notation (2)
	CFG Notation (3)
	BNF and Extended BNF
	EBNF: Example
	EBNF: ISO Notation
	MiniTriangle
	Concrete Syntax
	MiniTriangle Lexical Syntax (1)
	MiniTriangle Lexical Syntax (2)
	MiniTriangle: Tokens
	MiniTriangle Context-Free Syntax (1)
	MiniTriangle Context-Free Syntax (2)
	MiniTriangle Context-Free Syntax (3)
	Another MiniTriangle Program
	Parse Tree for the Program
	Why a Lexical Grammar? (1)
	Why a Lexical Grammar? (2)
	MiniTriangle Abstract Syntax (1)
	MiniTriangle Abstract Syntax (2)
	Abstract Syntax Tree for the Program
	Concrete vs. Abstract Syntax
	Concrete AST Representation
	Concrete AST Representation (2)
	Concrete AST Representation (3)
	Concrete AST Representation (4)
	Haskell Representation of the Program

