
COMP3012/G53CMP: Lecture 3
Syntactic Analysis: Bottom-Up Parsing

Henrik Nilsson

University of Nottingham, UK

COMP3012/G53CMP: Lecture 3 – p.1/36

This Lecture

• Parsing strategies: top-down and bottom-up.

• Shift-Reduce parsing theory.

• LR(0) parsing.

• LR(0), LR(k), and LALR(k) grammars

COMP3012/G53CMP: Lecture 3 – p.2/36

Parsing Strategies

There are two basic strategies for parsing:

• Top-down parsing:

- Attempts to construct the parse tree from
the root downward.

- Traces out a leftmost derivation.

- E.g. Recursive-Descent Parsing (see G52LAC).

• Bottom-up parsing:

- Attempts to construct the parse tree from
the leaves working up toward the root.

- Traces out a rightmost derivation in reverse.

COMP3012/G53CMP: Lecture 3 – p.3/36

Top-Down: Leftmost Derivation

Consider the grammar:

S → aABe A → bcA | c B → d

Call sequence for predictive parser on abccde:
parseS S ⇒

lm

aABe

read a

parseA ⇒
lm

abcABe

read b

read c

parseA ⇒
lm

abccBe

read c

parseB ⇒
lm

abccde

read d

read e

COMP3012/G53CMP: Lecture 3 – p.4/36

Shift-Reduce Parsing

Shift-reduce parsing is a general style of
bottom-up syntax analysis:

• Works from the leaves toward the root of the
parse tree.

• Has two basic actions:

- Shift (read) next terminal symbol.

- Reduce a sequence of read terminals and
previously reduced nonterminals
corresponding to the RHS of a production
to LHS nonterminal of that production.

COMP3012/G53CMP: Lecture 3 – p.5/36

Bottom-Up: Rightmost Der. in Reverse

Consider (again) the grammar:

S → aABe A → bcA | c B → d

Reduction steps for the sentence abccde to S

abccde (reduce by A → c)
abcAde (reduce by A → bcA)
aAde (reduce by B → d)
aABe (reduce by S → aABe)
S

Trace out rightmost derivation in reverse:

S ⇒
rm

aABe ⇒
rm

aAde ⇒
rm

abcAde ⇒
rm

abccde

How can we know when and what to reduce???
COMP3012/G53CMP: Lecture 3 – p.6/36

Shift-Reduce Parsing: Idea

How can we know when and what to reduce???

Idea:

• Construct a DFA where each state is labelled
by “all possibilities” given the input and
reductions thus far. (Similar to how an NFA is
turned into a DFA.)

• Whenever reduction is possible, if there is
only one possible reduction, then it is always
clear what to do.

Will make this more precise in the following.

COMP3012/G53CMP: Lecture 3 – p.7/36

LL, LR, and LALR parsing (1)

Three important classes of parsing methods:

• LL(k):

- input scanned Left to right

- Leftmost derivation

- k symbols of lookahead

• LR(k):

- input scanned Left to right

- Rightmost derivation in reverse

- k symbols of lookahead

• LALR(k): LookAhead LR, simplified LR parsing
COMP3012/G53CMP: Lecture 3 – p.8/36

LL, LR, and LALR parsing (2)

By extension, the classes of grammars these
methods can handle are also classified as LL(k),
LR(k), and LALR(k).

COMP3012/G53CMP: Lecture 3 – p.9/36



Why study LR and LALR parsing?

• These methods handle a wide class of
grammars of practical significance.

• In particular, handles left- and right-recursive
grammars (but left rec. needs less stack).

• LALR is a good compromise between express-
iveness and space cost of implementation.

• Consequently, many parser generator tools
based on LALR.

• We will mainly study LR(0) parsing because it
is the simplest, yet uses the same
fundamental principles as LR(1) and LALR(1).

COMP3012/G53CMP: Lecture 3 – p.10/36

Shift-Reduce Parsing Theory (1)

Some terminology:

• An item for a CFG is a production with a dot
anywhere in the RHS.

For example, the items for the grammar

S → aAc A → Ab | ǫ

are
S → · aAc A → ·Ab

S → a · Ac A → A · b

S → aA · c A → Ab ·

S → aAc · A → ·
COMP3012/G53CMP: Lecture 3 – p.11/36

Shift-Reduce Parsing Theory (2)

• Recap: Given a CFG G = (N,T, P, S), a
string φ ∈ (N ∪ T )∗ is a sentential form for G

iff S
∗
⇒
G

φ.

• A right-sentential form is a sentential form
that can be derived by a rightmost derivation.

• A handle of a right-sentential form φ is a

substring α of φ such that S
∗
⇒
rm

δAw ⇒
rm

δαw

and δαw = φ, where α, δ, φ ∈ (N ∪ T )∗, and
w ∈ T ∗.

COMP3012/G53CMP: Lecture 3 – p.12/36

Shift-Reduce Parsing Theory (3)

For example, consider the grammar:

S → aABe A → bcA | c B → d

The following is a rightmost derivation:

S ⇒
rm

aABe ⇒
rm

aAde ⇒
rm

abcAde

aABe, aAde and abcAde are right-sentential forms.
Handle for each? aABe, d, and bcA

For an unambiguous grammar, the rightmost
derivation is unique. Thus we can talk about “the
handle” rather than merely “a handle”.

COMP3012/G53CMP: Lecture 3 – p.13/36

Shift-Reduce Parsing Theory (4)

• A viable prefix of a right-sentential form φ is
any prefix γ of φ ending no farther right than
the right end of the handle of φ.

• An item A → α · β is valid for a viable prefix γ
if there is a rightmost derivation

S
∗
⇒
rm

δAw ⇒
rm

δαβw

and δα = γ.

• An item is complete if the the dot is the
rightmost symbol in the item.

COMP3012/G53CMP: Lecture 3 – p.14/36

Shift-Reduce Parsing Theory (5)

Consider the grammar

S → aABe A → bcA | c B → d

and the rightmost derivation

S ⇒
rm

aABe ⇒
rm

aAde ⇒
rm

abcAde

The right-sentential form abcAde has handle bcA.

Viable prefixes? ǫ, a, ab, abc, abcA.

COMP3012/G53CMP: Lecture 3 – p.15/36

Shift-Reduce Parsing Theory (6)

Last derivation step aAde ⇒
rm

abcAde by

production A → bcA, meaning the handle is bcA.

Valid item for each non-ǫ viable prefix of abcAde
considering this particular derivation only?

Viable prefix Valid item

a A → · bcA

ab A → b · cA

abc A → bc · A

abcA A → bcA ·

Any complete valid item?
COMP3012/G53CMP: Lecture 3 – p.16/36

Shift-Reduce Parsing Theory (7)

Knowing the valid items for a viable prefix allows
a rightmost derivation in reverse to be found:

• If A → α · is a complete valid item for a viable
prefix γ = δα of a right-sentential form γw
(w ∈ T ∗), then it appears that A → α can be
used at the last step, and that the previous
right-sentential form is δAw.

• If this indeed always is the case for a CFG
G, then for any x ∈ L(G), since x is a right-
sentential from, previous right-sentential
forms can be determined until S is reached,
giving a right-most derivation of x.

COMP3012/G53CMP: Lecture 3 – p.17/36

Shift-Reduce Parsing Theory (8)

Of course, if A → α · is a complete valid item for
a viable prefix γ = δα, in general, we only know it
may be possible to use A → α to derive γw
from δAw. For example:

• A → α · may be valid because of a different

rightmost derivation S
∗
⇒
rm

δAw′ ⇒
rm

φw′.

• There could be two or more complete items
valid for γ.

• There could be a handle of γw that includes
symbols of w.

COMP3012/G53CMP: Lecture 3 – p.18/36



LR(0) Parsing (1)

• A CFG for which knowing a complete valid
item is enough to determine the previous
right-sentential form is called LR(0) grammar.

• The set of viable prefixes for any CFG is regular!
(Somewhat unexpected: the language of a
CFG is obviously not regular in general.)

• Thus, an efficient parser can be developed for
an LR(0) CFG based on a DFA for recognising
viable prefixes and their valid items.

• The states of the DFA are sets of items valid
for a recognised viable prefix.

COMP3012/G53CMP: Lecture 3 – p.19/36

LR(0) Parsing (2)

A DFA recognising viable prefixes for the CFG

S → aABe A → bcA | c B → d

S → ·aABe

I0
S → a ·ABe

A → ·bcA

A → ·c

I1

A → b · cA

I2

A → c ·

I3

A → bc ·A

A → ·bcA

A → ·c

I4

S → aA · Be

B → ·d

I5

B → d ·

I6

A → bcA ·

I7

S → aAB · e

I8

S → aABe ·

I9

a

b c

A

c

b

c

A

d

B

e

COMP3012/G53CMP: Lecture 3 – p.20/36

LR(0) Parsing (3)

Drawing conventions for “LR DFAs”:

• For the purpose of recognizing the set of
viable prefixes, all drawn states are
considered accepting.

• Error transitions and error states are not
drawn.

COMP3012/G53CMP: Lecture 3 – p.21/36

LR(0) Parsing (4)

How to construct such a DFA is beyond the
scope of this course. See e.g. Aho, Sethi, Ullman
(1986) for details. However, some observations:

• Recall that the viable prefixes for the
right-sentential form abcAde are ǫ, a, ab, abc,
abcA. They are indeed all recognised by the
DFA (all states are considered accepting).

• Recall that the item A → bc · A is valid for the
viable prefix abc. The corresponding DFA
state indeed contains that item. (Along with
more items in this case!)

COMP3012/G53CMP: Lecture 3 – p.22/36

LR(0) Parsing (5)

• Recall that item A → bcA · is a complete valid
item for the viable prefix abcA. The
corresponding DFA state indeed contains that
item (and only that item).

COMP3012/G53CMP: Lecture 3 – p.23/36

LR(0) Parsing (6)

Given a DFA recognising viable prefixes, an
LR(0) parser can be constructed as follows:

• In a state without complete items: Shift

- Read next terminal symbol and push it
onto an internal parse stack.

- Move to new state by following the edge
labelled by the read terminal.

COMP3012/G53CMP: Lecture 3 – p.24/36

LR(0) Parsing (7)

• In a state with a single complete item: Reduce

- The top of the parse stack contains the
handle of the current right-sentential form
(since we have recognised a viable prefix
for which a single complete item is valid).

- The handle is just the RHS of the valid item.

- Reduce to the previous right-sentential
form by replacing the handle on the parse
stack with the LHS of the valid item.

- Move to the state indicated by the new
viable prefix on the parse stack.

COMP3012/G53CMP: Lecture 3 – p.25/36

LR(0) Parsing (8)

• If a state contains both complete and
incomplete items, or if a state contains more
than one complete item, then the grammar is
not LR(0).

COMP3012/G53CMP: Lecture 3 – p.26/36

LR(0) Parsing (9)

S → ·aABe

I0
S → a ·ABe

A → ·bcA

A → ·c

I1

A → b · cA

I2

A → c ·

I3

A → bc ·A

A → ·bcA

A → ·c

I4

S → aA · Be

B → ·d

I5

B → d ·

I6

A → bcA ·

I7

S → aAB · e

I8

S → aABe ·

I9

a

b c

A

c

b

c

A

d

B

e

Note: γw is the current right-sentential form.
State Stack (γ) Input (w) Move
I0 ǫ abccde Shift
I1 a bccde Shift

COMP3012/G53CMP: Lecture 3 – p.27/36



LR(0) Parsing (10)

S → ·aABe

I0
S → a ·ABe

A → ·bcA

A → ·c

I1

A → b · cA

I2

A → c ·

I3

A → bc ·A

A → ·bcA

A → ·c

I4

S → aA · Be

B → ·d

I5

B → d ·

I6

A → bcA ·

I7

S → aAB · e

I8

S → aABe ·

I9

a

b c

A

c

b

c

A

d

B

e

State Stack (γ) Input (w) Move
I2 ab ccde Shift
I4 abc cde Shift
I3 abcc de Reduce by A → c

COMP3012/G53CMP: Lecture 3 – p.28/36

LR(0) Parsing (11)

S → ·aABe

I0
S → a ·ABe

A → ·bcA

A → ·c

I1

A → b · cA

I2

A → c ·

I3

A → bc ·A

A → ·bcA

A → ·c

I4

S → aA · Be

B → ·d

I5

B → d ·

I6

A → bcA ·

I7

S → aAB · e

I8

S → aABe ·

I9

a

b c

A

c

b

c

A

d

B

e

State Stack (γ) Input (w) Move
I7 abcA de Reduce by A → bcA
I5 aA de Shift
I6 aAd e Reduce by B → d

COMP3012/G53CMP: Lecture 3 – p.29/36

LR(0) Parsing (12)

S → ·aABe

I0
S → a ·ABe

A → ·bcA

A → ·c

I1

A → b · cA

I2

A → c ·

I3

A → bc ·A

A → ·bcA

A → ·c

I4

S → aA · Be

B → ·d

I5

B → d ·

I6

A → bcA ·

I7

S → aAB · e

I8

S → aABe ·

I9

a

b c

A

c

b

c

A

d

B

e

State Stack (γ) Input (w) Move
I8 aAB e Shift
I9 aABe ǫ Reduce by S → aABe

S ǫ Done

COMP3012/G53CMP: Lecture 3 – p.30/36

LR(0) Parsing (13)

Complete sequence (γw is right-sentential form):
State Stack (γ) Input (w) Move
I0 ǫ abccde Shift
I1 a bccde Shift
I2 ab ccde Shift
I4 abc cde Shift
I3 abcc de Reduce by A → c
I7 abcA de Reduce by A → bcA
I5 aA de Shift
I6 aAd e Reduce by B → d
I8 aAB e Shift
I9 aABe ǫ Reduce by S → aABe

S ǫ Done

Cf: S ⇒
rm

aABe ⇒
rm

aAde ⇒
rm

abcAde ⇒
rm

abccde

COMP3012/G53CMP: Lecture 3 – p.31/36

LR(0) Parsing (14)

Even more clear that the parser carries out the
rightmost derivation in reverse if we look at the
right-sentential forms γw of the reduction steps
only:

abccde ⇐
rm

abcAde ⇐
rm

aAde ⇐
rm

aABe ⇐
rm

S

COMP3012/G53CMP: Lecture 3 – p.32/36

LR Parsing & Left/Right Recursion (1)

Remark: Note how the right-recursive
production

A → bcA

causes symbols bc to pile up on the parse stack
until a reduction by

A → c

can occur, in turn allowing the stacked symbols
to be reduced away.

COMP3012/G53CMP: Lecture 3 – p.33/36

LR Parsing & Left/Right Recursion (2)

Even clearer if considering parsing of a string like

abcbcbccde or abcbcbcbcbccde

Exercise: Try parsing these!

Left-recursion allows reduction to happen
sooner, thus keeping the size of the parse stack
down. This is why left-recursive grammars often
are preferred for LR parsing.

COMP3012/G53CMP: Lecture 3 – p.34/36

LR(1) Grammars (1)

• In practice, LR(0) tends to be a bit too
restrictive.

• If we add one symbol of “lookahead” by
determining the set of terminals that
possibly could follow a handle being
reduced by a production A → β, then a wider
class of grammars can be handled.

• Such grammars are called LR(1).

COMP3012/G53CMP: Lecture 3 – p.35/36

LR(1) Grammars (2)

Idea:

• Associate a lookahead set with items:

A → α · β, {a1, a2, . . . , an}

• On reduction, a complete item is only valid if
the next input symbol belongs to its
lookahead set.

• Thus it is OK to have two or more
simultaneously valid complete items, as long
as their lookahead sets are disjoint.

(Similar to predictive recursive-descent parsing.)
COMP3012/G53CMP: Lecture 3 – p.36/36


	This Lecture
	Parsing Strategies
	Top-Down: Leftmost Derivation
	Shift-Reduce Parsing
	Bottom-Up: Rightmost Der. in Reverse
	Shift-Reduce Parsing: Idea
	{LL}, LR, and LALR parsing (1)
	{LL}, LR, and LALR parsing (2)
	Why study LR and LALR parsing?
	Shift-Reduce Parsing Theory (1)
	Shift-Reduce Parsing Theory (2)
	Shift-Reduce Parsing Theory (3)
	Shift-Reduce Parsing Theory (4)
	Shift-Reduce Parsing Theory (5)
	Shift-Reduce Parsing Theory (6)
	Shift-Reduce Parsing Theory (7)
	Shift-Reduce Parsing Theory (8)
	LR(0) Parsing
(1)
	LR(0) Parsing
(2)
	LR(0) Parsing
(3)
	LR(0) Parsing
(4)
	LR(0) Parsing
(5)
	LR(0) Parsing
(6)
	LR(0) Parsing
(7)
	LR(0) Parsing
(8)
	LR(0) Parsing
(9)
	LR(0) Parsing
(10)
	LR(0) Parsing
(11)
	LR(0) Parsing
(12)
	LR(0) Parsing
(13)
	LR(0) Parsing
(14)
	LR Parsing & Left/Right Recursion (1)
	LR Parsing & Left/Right Recursion (2)
	LR(1) Grammars
(1)
	LR(1) Grammars
(2)

