COMP3012/G53CMP: Lecture 3 Syntactic Analysis: Bottom-Up Parsing

Henrik Nilsson

University of Nottingham, UK

This Lecture

- Parsing strategies: top-down and bottom-up.
- Shift-Reduce parsing theory.
- LR(0) parsing.
- LR(0), LR(k), and LALR(k) grammars

Parsing Strategies

There are two basic strategies for parsing:

- Top-down parsing:
 - Attempts to construct the parse tree from the root downward.
 - Traces out a leftmost derivation.
 - E.g. Recursive-Descent Parsing (see G52LAC).

Parsing Strategies

There are two basic strategies for parsing:

- Top-down parsing:
 - Attempts to construct the parse tree from the root downward.
 - Traces out a leftmost derivation.
 - E.g. Recursive-Descent Parsing (see G52LAC).
- Bottom-up parsing:
 - Attempts to construct the parse tree from the leaves working up toward the root.
 - Traces out a rightmost derivation in reverse.

Top-Down: Leftmost Derivation

Consider the grammar:

$$S \to aABe$$

$$S \rightarrow aABe$$
 $A \rightarrow bcA \mid c$

$$B \to d$$

Call sequence for predictive parser on abccde:

```
\overline{aABe}
parseS
   read a
                                       abcABe
   parseA
       read b
      read c
                                       abccBe
      parseA
                                  lm
          read c
                                       abccde
   parseB
                                  lm
       read d
   read e
```

Shift-Reduce Parsing

Shift-reduce parsing is a general style of bottom-up syntax analysis:

- Works from the leaves toward the root of the parse tree.
- Has two basic actions:
 - Shift (read) next terminal symbol.
 - Reduce a sequence of read terminals and previously reduced nonterminals corresponding to the RHS of a production to LHS nonterminal of that production.

Bottom-Up: Rightmost Der. in Reverse

Consider (again) the grammar:

$$S \to aABe$$

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

$$B \to d$$

Reduction steps for the sentence *abccde* to S

```
abccde
abcAde
aAde
aABe
```

(reduce by
$$A \rightarrow c$$
)
(reduce by $A \rightarrow bcA$)
(reduce by $B \rightarrow d$)
(reduce by $S \rightarrow aABe$)

Bottom-Up: Rightmost Der. in Reverse

Consider (again) the grammar:

$$S \to aABe$$

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

$$B \to d$$

Reduction steps for the sentence *abccde* to *S*

$$abccde$$
 $abcAde$
 $aAde$
 $aABe$

(reduce by
$$A \rightarrow c$$
)
(reduce by $A \rightarrow bcA$)
(reduce by $B \rightarrow d$)
(reduce by $S \rightarrow aABe$)

Trace out rightmost derivation in reverse:

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde \Rightarrow abccde$$

Bottom-Up: Rightmost Der. in Reverse

Consider (again) the grammar:

$$S \to aABe$$

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

$$B \to d$$

Reduction steps for the sentence *abccde* to *S*

$$abccde$$
 $abcAde$
 $aAde$
 $aABe$

(reduce by
$$A \rightarrow c$$
)
(reduce by $A \rightarrow bcA$)
(reduce by $B \rightarrow d$)
(reduce by $S \rightarrow aABe$)

Trace out rightmost derivation in reverse:

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde \Rightarrow abccde$$

How can we know when and what to reduce???

How can we know when and what to reduce???

How can we know when and what to reduce??? Idea:

Construct a DFA where each state is labelled by "all possibilities" given the input and reductions thus far. (Similar to how an NFA is turned into a DFA.)

How can we know when and what to reduce??? Idea:

- Construct a DFA where each state is labelled by "all possibilities" given the input and reductions thus far. (Similar to how an NFA is turned into a DFA.)
- Whenever reduction is possible, if there is only one possible reduction, then it is always clear what to do.

How can we know when and what to reduce??? Idea:

- Construct a DFA where each state is labelled by "all possibilities" given the input and reductions thus far. (Similar to how an NFA is turned into a DFA.)
- Whenever reduction is possible, if there is only one possible reduction, then it is always clear what to do.

Will make this more precise in the following.

- *LL(k)*:
 - input scanned Left to right
 - Leftmost derivation
 - k symbols of lookahead

- **LL(**k**)**:
 - input scanned Left to right
 - Leftmost derivation
 - k symbols of lookahead
- *LR(k)*:
 - input scanned Left to right
 - Fightmost derivation in reverse
 - k symbols of lookahead

- *LL(k)*:
 - input scanned Left to right
 - Leftmost derivation
 - k symbols of lookahead
- *LR(k)*:
 - input scanned Left to right
 - Fightmost derivation in reverse
 - k symbols of lookahead
- LALR(k): LookAhead LR, simplified LR parsing

By extension, the classes of grammars these methods can handle are also classified as LL(k), LR(k), and LALR(k).

These methods handle a wide class of grammars of practical significance.

- These methods handle a wide class of grammars of practical significance.
- In particular, handles left- and right-recursive grammars (but left rec. needs less stack).

- These methods handle a wide class of grammars of practical significance.
- In particular, handles left- and right-recursive grammars (but left rec. needs less stack).
- LALR is a good compromise between expressiveness and space cost of implementation.

- These methods handle a wide class of grammars of practical significance.
- In particular, handles left- and right-recursive grammars (but left rec. needs less stack).
- LALR is a good compromise between expressiveness and space cost of implementation.
- Consequently, many parser generator tools based on LALR.

- These methods handle a wide class of grammars of practical significance.
- In particular, handles left- and right-recursive grammars (but left rec. needs less stack).
- LALR is a good compromise between expressiveness and space cost of implementation.
- Consequently, many parser generator tools based on LALR.
- We will mainly study LR(0) parsing because it is the simplest, yet uses the same fundamental principles as LR(1) and LALR(1).

Some terminology:

An *item* for a CFG is a production with a dot anywhere in the RHS.

Some terminology:

An *item* for a CFG is a production with a dot anywhere in the RHS.

For example, the items for the grammar

$$S \to aAc \quad A \to Ab \mid \epsilon$$

are

Recap: Given a CFG G=(N,T,P,S), a string $\phi \in (N \cup T)^*$ is a sentential form for G iff $S \overset{*}{\Rightarrow} \phi$.

- Recap: Given a CFG G=(N,T,P,S), a string $\phi \in (N \cup T)^*$ is a sentential form for G iff $S \overset{*}{\Rightarrow} \phi$.
- A *right-sentential form* is a sentential form that can be derived by a rightmost derivation.

- Recap: Given a CFG G=(N,T,P,S), a string $\phi \in (N \cup T)^*$ is a sentential form for G iff $S \overset{*}{\Rightarrow} \phi$.
- A *right-sentential form* is a sentential form that can be derived by a rightmost derivation.
- A handle of a right-sentential form ϕ is a substring α of ϕ such that $S \overset{*}{\Rightarrow} \delta Aw \overset{*}{\Rightarrow} \delta Aw \overset{*}{\Rightarrow} \delta \alpha w$ and $\delta \alpha w = \phi$, where $\alpha, \delta, \phi \in (N \cup T)^*$, and $w \in T^*$.

For example, consider the grammar:

$$S \to aABe$$

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

$$B \to d$$

For example, consider the grammar:

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

The following is a rightmost derivation:

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

For example, consider the grammar:

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

The following is a rightmost derivation:

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

aABe, aAde and abcAde are right-sentential forms. Handle for each?

For example, consider the grammar:

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

The following is a rightmost derivation:

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

 \overline{aABe} , aAde and abcAde are right-sentential forms. Handle for each? \overline{aABe}

For example, consider the grammar:

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

The following is a rightmost derivation:

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

 \overline{aABe} , \overline{aAde} and abcAde are right-sentential forms. Handle for each? \overline{aABe} , \overline{d}

For example, consider the grammar:

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

The following is a rightmost derivation:

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

aABe, aAde and abcAde are right-sentential forms. Handle for each? aABe, d, and bcA

For example, consider the grammar:

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

The following is a rightmost derivation:

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

aABe, aAde and abcAde are right-sentential forms. Handle for each? aABe, d, and bcA

For an unambiguous grammar, the rightmost derivation is unique. Thus we can talk about "the handle" rather than merely "a handle".

• A *viable prefix* of a right-sentential form ϕ is any prefix γ of ϕ ending no farther right than the right end of the handle of ϕ .

- A *viable prefix* of a right-sentential form ϕ is any prefix γ of ϕ ending no farther right than the right end of the handle of ϕ .
- An item $A \to \alpha \cdot \beta$ is **valid** for a viable prefix γ if there is a rightmost derivation

$$S \stackrel{*}{\underset{rm}{\Rightarrow}} \delta Aw \stackrel{*}{\underset{rm}{\Rightarrow}} \delta \alpha \beta w$$

and
$$\delta \alpha = \gamma$$
.

- A *viable prefix* of a right-sentential form ϕ is any prefix γ of ϕ ending no farther right than the right end of the handle of ϕ .
- An item $A \to \alpha \cdot \beta$ is *valid* for a viable prefix γ if there is a rightmost derivation

$$S \stackrel{*}{\underset{rm}{\Rightarrow}} \delta Aw \stackrel{*}{\underset{rm}{\Rightarrow}} \delta \alpha \beta w$$

and $\delta \alpha = \gamma$.

An item is complete if the the dot is the rightmost symbol in the item.

Consider the grammar

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

and the rightmost derivation

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

Consider the grammar

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

and the rightmost derivation

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

The right-sentential form abcAde has handle bcA.

Consider the grammar

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

and the rightmost derivation

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

The right-sentential form abcAde has handle bcA.

Viable prefixes?

Consider the grammar

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

and the rightmost derivation

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

The right-sentential form abcAde has handle bcA.

Viable prefixes? ϵ ,

Consider the grammar

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

and the rightmost derivation

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

The right-sentential form abcAde has handle bcA.

Viable prefixes? ϵ , α ,

Consider the grammar

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

and the rightmost derivation

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

The right-sentential form abcAde has handle bcA.

Viable prefixes? ϵ , a, ab,

Consider the grammar

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

and the rightmost derivation

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

The right-sentential form abcAde has handle bcA.

Viable prefixes? ϵ , a, ab, abc,

Consider the grammar

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$

and the rightmost derivation

$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde$$

The right-sentential form abcAde has handle bcA.

Viable prefixes? ϵ , a, ab, abc, abcA.

Last derivation step $aAde \Rightarrow abcAde$ by production $A \rightarrow bcA$, meaning the handle is bcA.

Viable prefix	Valid item
---------------	------------

Last derivation step $aAde \Rightarrow abcAde$ by production $A \rightarrow bcA$, meaning the handle is bcA.

Viable prefix	Valid item
\overline{a}	

Last derivation step $aAde \Rightarrow abcAde$ by production $A \rightarrow bcA$, meaning the handle is bcA.

Valid item
$A \rightarrow \cdot bcA$

Last derivation step $aAde \Rightarrow abcAde$ by production $A \rightarrow bcA$, meaning the handle is bcA.

Viable prefix	Valid item
\overline{a}	$A \rightarrow \cdot bcA$
ab	

Last derivation step $aAde \Rightarrow abcAde$ by production $A \rightarrow bcA$, meaning the handle is bcA.

Viable prefix	Valid item
\overline{a}	$A \rightarrow \cdot bcA$
ab	$A \to b \cdot cA$

Last derivation step $aAde \Rightarrow abcAde$ by production $A \rightarrow bcA$, meaning the handle is bcA.

Viable prefix	Valid item
\overline{a}	$A \rightarrow \cdot bcA$
ab	$A \to b \cdot cA$
abc	

Last derivation step $aAde \Rightarrow abcAde$ by production $A \rightarrow bcA$, meaning the handle is bcA.

Viable prefix	Valid item
\overline{a}	$A \rightarrow \cdot bcA$
ab	$A \to b \cdot cA$
abc	$A \to bc \cdot A$

Last derivation step $aAde \Rightarrow abcAde$ by production $A \rightarrow bcA$, meaning the handle is bcA.

Viable prefix	Valid item
\overline{a}	$A \rightarrow \cdot bcA$
ab	$A \to b \cdot cA$
abc	$A \to bc \cdot A$
abcA	

Last derivation step $aAde \Rightarrow abcAde$ by production $A \rightarrow bcA$, meaning the handle is bcA.

Viable prefix	Valid item
\overline{a}	$A \rightarrow \cdot bcA$
ab	$A \to b \cdot cA$
abc	$A \to bcA$ $A \to b \cdot cA$ $A \to bc \cdot A$
abcA	$A \rightarrow bcA$.

Last derivation step $aAde \Rightarrow abcAde$ by production $A \rightarrow bcA$, meaning the handle is bcA.

Valid item for each non- ϵ viable prefix of abcAde considering this particular derivation only?

Viable prefix	
\overline{a}	$A \rightarrow \cdot bcA$
ab	$A \to b \cdot cA$
abc	$A \to bc \cdot A$
abcA	$A \rightarrow \cdot bcA$ $A \rightarrow b \cdot cA$ $A \rightarrow bc \cdot A$ $A \rightarrow bcA \cdot$

Any *complete* valid item?

Knowing the valid items for a viable prefix allows a rightmost derivation in reverse to be found:

Knowing the valid items for a viable prefix allows a rightmost derivation in reverse to be found:

If $A \to \alpha$ · is a *complete* valid item for a viable prefix $\gamma = \delta \alpha$ of a right-sentential form γw $(w \in T^*)$, then it *appears* that $A \to \alpha$ can be used at the last step, and that the previous right-sentential form is δAw .

Knowing the valid items for a viable prefix allows a rightmost derivation in reverse to be found:

- If $A \to \alpha$ is a *complete* valid item for a viable prefix $\gamma = \delta \alpha$ of a right-sentential form γw $(w \in T^*)$, then it *appears* that $A \to \alpha$ can be used at the last step, and that the previous right-sentential form is δAw .
- If this indeed *always is the case* for a CFG G, then for any $x \in L(G)$, since x is a right-sentential from, previous right-sentential forms can be determined until S is reached, giving a right-most derivation of x.

Of course, if $A \to \alpha \cdot$ is a complete valid item for a viable prefix $\gamma = \delta \alpha$, in general, we only know it may be possible to use $A \to \alpha$ to derive γw from δAw . For example:

Of course, if $A \to \alpha \cdot$ is a complete valid item for a viable prefix $\gamma = \delta \alpha$, in general, we only know it may be possible to use $A \to \alpha$ to derive γw from δAw . For example:

 $A \to \alpha$ · may be valid because of a different rightmost derivation $S \overset{*}{\underset{rm}{\Rightarrow}} \delta A w' \overset{}{\underset{rm}{\Rightarrow}} \phi w'$.

Of course, if $A \to \alpha$ is a complete valid item for a viable prefix $\gamma = \delta \alpha$, in general, we only know it may be possible to use $A \to \alpha$ to derive γw from δAw . For example:

- $A \to \alpha$ · may be valid because of a different rightmost derivation $S \overset{*}{\underset{rm}{\Rightarrow}} \delta A w' \overset{}{\underset{rm}{\Rightarrow}} \phi w'$.
- There could be *two or more complete items* valid for γ .

Of course, if $A \to \alpha \cdot$ is a complete valid item for a viable prefix $\gamma = \delta \alpha$, in general, we only know it may be possible to use $A \to \alpha$ to derive γw from δAw . For example:

- $A \to \alpha$ · may be valid because of a different rightmost derivation $S \overset{*}{\underset{rm}{\Rightarrow}} \delta A w' \overset{}{\underset{rm}{\Rightarrow}} \phi w'$.
- There could be *two or more complete items* valid for γ .
- There could be a handle of γw that *includes* symbols of w.

A CFG for which knowing a complete valid item is enough to determine the previous right-sentential form is called *LR(0)* grammar.

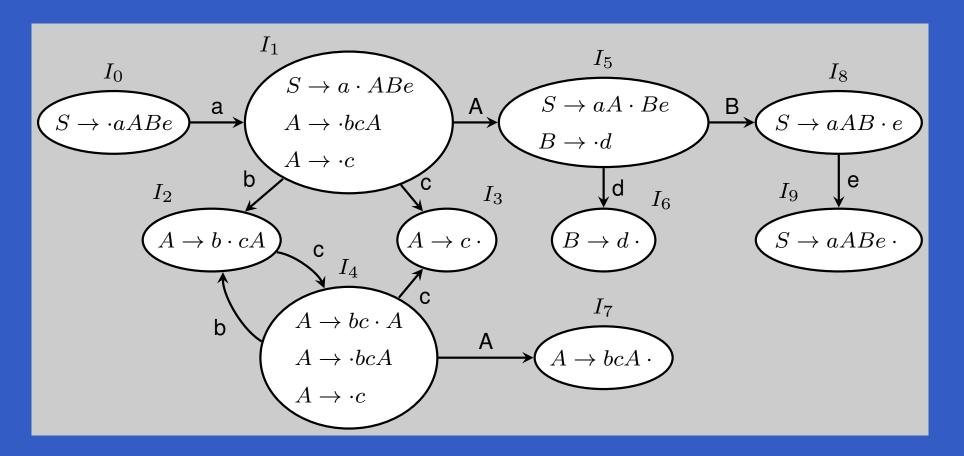
- A CFG for which knowing a complete valid item is enough to determine the previous right-sentential form is called LR(0) grammar.
- The set of viable prefixes for any CFG is regular! (Somewhat unexpected: the language of a CFG is obviously not regular in general.)

- A CFG for which knowing a complete valid item is enough to determine the previous right-sentential form is called *LR(0)* grammar.
- The set of viable prefixes for any CFG is regular! (Somewhat unexpected: the language of a CFG is obviously not regular in general.)
- Thus, an efficient parser can be developed for an LR(0) CFG based on a DFA for recognising viable prefixes and their valid items.

- A CFG for which knowing a complete valid item is enough to determine the previous right-sentential form is called LR(0) grammar.
- The set of viable prefixes for any CFG is regular! (Somewhat unexpected: the language of a CFG is obviously not regular in general.)
- Thus, an efficient parser can be developed for an LR(0) CFG based on a DFA for recognising viable prefixes and their valid items.
- The states of the DFA are **sets** of items valid for a recognised viable prefix.

A DFA recognising viable prefixes for the CFG

$$S \to aABe$$
 $A \to bcA \mid c$ $B \to d$



Drawing conventions for "LR DFAs":

- For the purpose of recognizing the set of viable prefixes, all drawn states are considered accepting.
- Error transitions and error states are not drawn.

How to construct such a DFA is beyond the scope of this course. See e.g. Aho, Sethi, Ullman (1986) for details. However, some observations:

How to construct such a DFA is beyond the scope of this course. See e.g. Aho, Sethi, Ullman (1986) for details. However, some observations:

Recall that the viable prefixes for the right-sentential form abcAde are ϵ , a, ab, abc, abcA. They are indeed all recognised by the DFA (all states are considered accepting).

How to construct such a DFA is beyond the scope of this course. See e.g. Aho, Sethi, Ullman (1986) for details. However, some observations:

- Recall that the viable prefixes for the right-sentential form abcAde are ϵ , a, ab, abc, abcA. They are indeed all recognised by the DFA (all states are considered accepting).
- Recall that the item $A \rightarrow bc \cdot A$ is valid for the viable prefix abc. The corresponding DFA state indeed contains that item. (Along with more items in this case!)

Recall that item $A \rightarrow bcA$ is a *complete* valid item for the viable prefix abcA. The corresponding DFA state indeed contains that item (and *only* that item).

Given a DFA recognising viable prefixes, an LR(0) parser can be constructed as follows:

Given a DFA recognising viable prefixes, an LR(0) parser can be constructed as follows:

In a state without complete items: Shift

Given a DFA recognising viable prefixes, an LR(0) parser can be constructed as follows:

- In a state without complete items: Shift
 - Read next terminal symbol and push it onto an internal parse stack.

Given a DFA recognising viable prefixes, an LR(0) parser can be constructed as follows:

- In a state without complete items: Shift
 - Read next terminal symbol and push it onto an internal parse stack.
 - Move to new state by following the edge labelled by the read terminal.

$\overline{LR(0)}$ Parsing (7)

In a state with a single complete item: Reduce

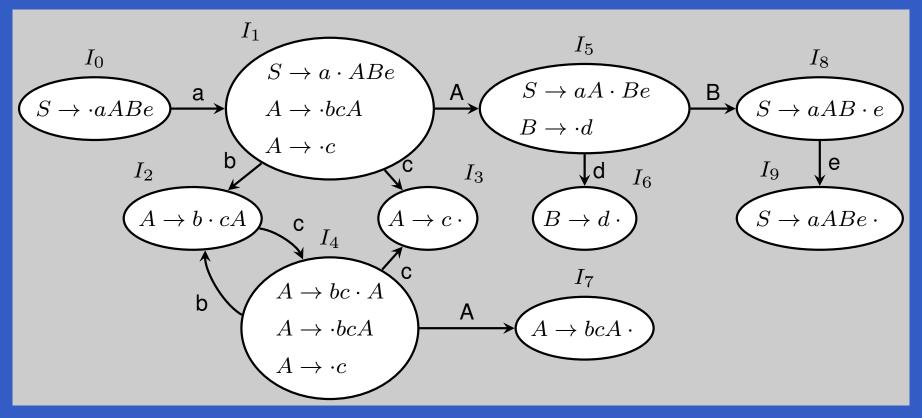
- In a state with a single complete item: Reduce
 - The top of the parse stack contains the *handle* of the current right-sentential form (since we have recognised a viable prefix for which a single *complete* item is valid).

- In a state with a single complete item: Reduce
 - The top of the parse stack contains the handle of the current right-sentential form (since we have recognised a viable prefix for which a single *complete* item is valid).
 - The handle is just the RHS of the valid item.

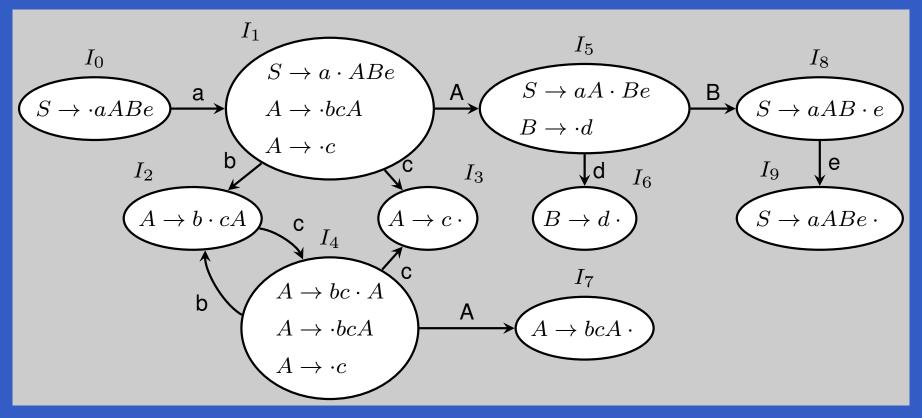
- In a state with a single complete item: Reduce
 - The top of the parse stack contains the handle of the current right-sentential form (since we have recognised a viable prefix for which a single *complete* item is valid).
 - The handle is just the RHS of the valid item.
 - Reduce to the previous right-sentential form by replacing the handle on the parse stack with the LHS of the valid item.

- In a state with a single complete item: Reduce
 - The top of the parse stack contains the handle of the current right-sentential form (since we have recognised a viable prefix for which a single *complete* item is valid).
 - The handle is just the RHS of the valid item.
 - Reduce to the previous right-sentential form by replacing the handle on the parse stack with the LHS of the valid item.
 - Move to the state indicated by the new viable prefix on the parse stack.

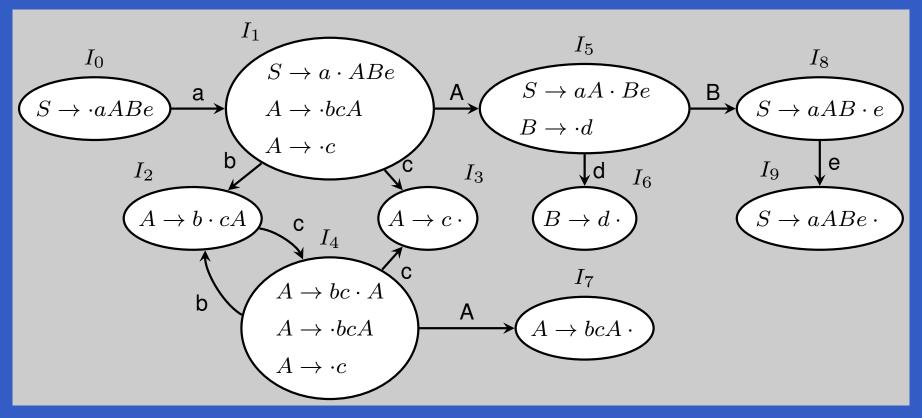
If a state contains both complete and incomplete items, or if a state contains more than one complete item, then the grammar is not LR(0).



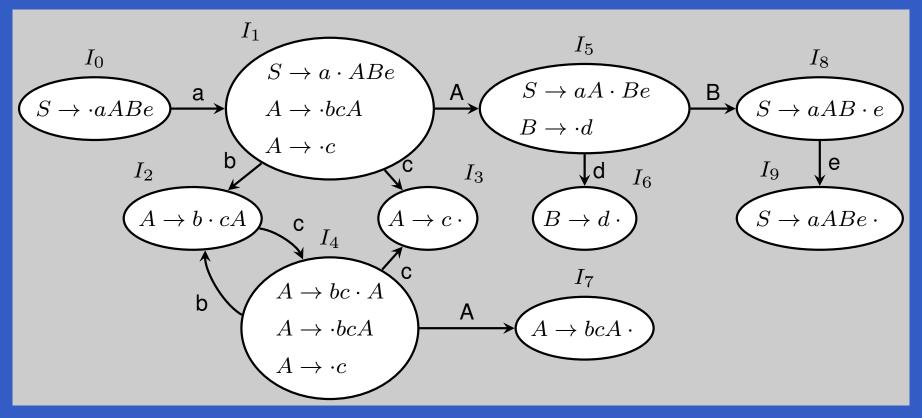
State	Stack (γ)	Input (w)	Move
I_0	ϵ	abccde	



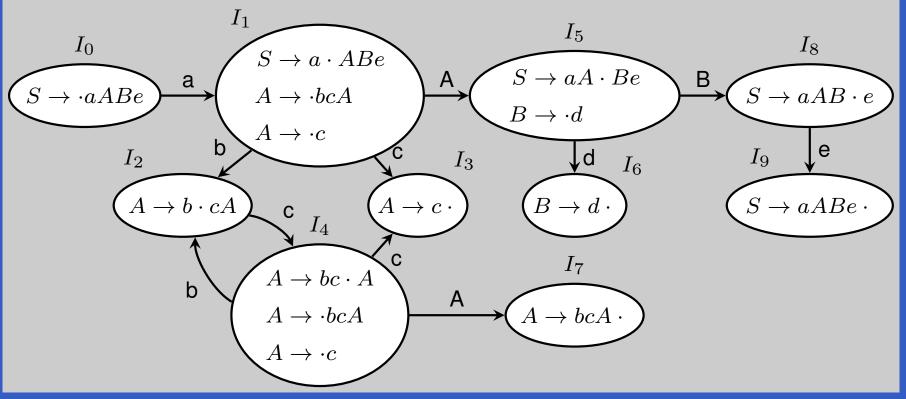
State	Stack (γ)	Input (w)	Move
$\overline{I_0}$	ϵ	abccde	Shift



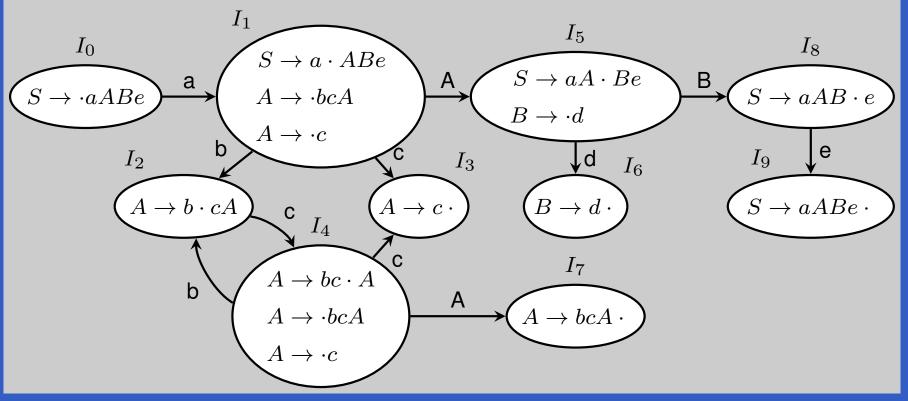
State	Stack (γ)	Input (w)	Move
$\overline{I_0}$	ϵ	abccde	Shift
I_1	a	bccde	



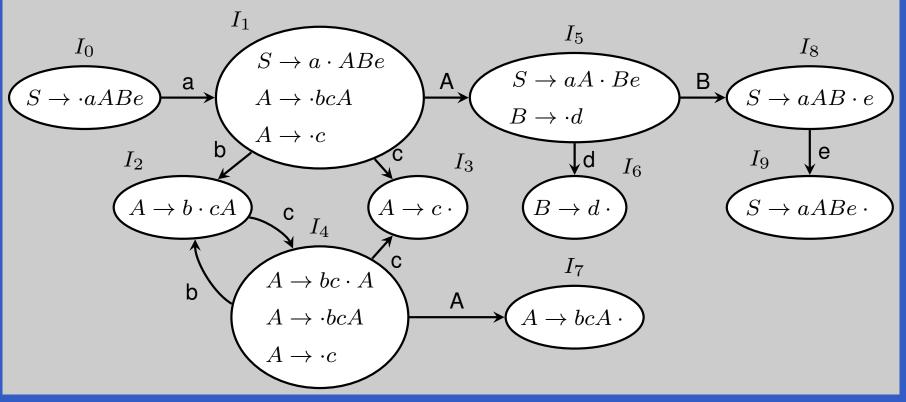
State	Stack (γ)	Input (w)	Move
$\overline{I_0}$	ϵ	abccde	Shift
I_1	a	bccde	Shift



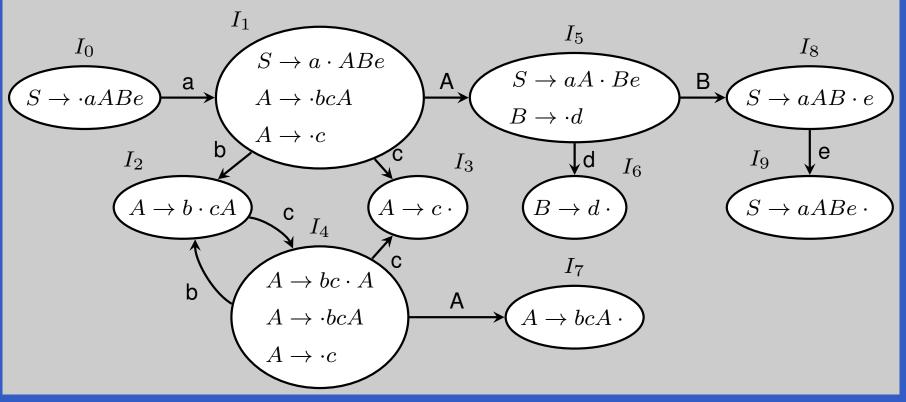
State	Stack (γ)	Input (w)	Move
I_2	ab	ccde	



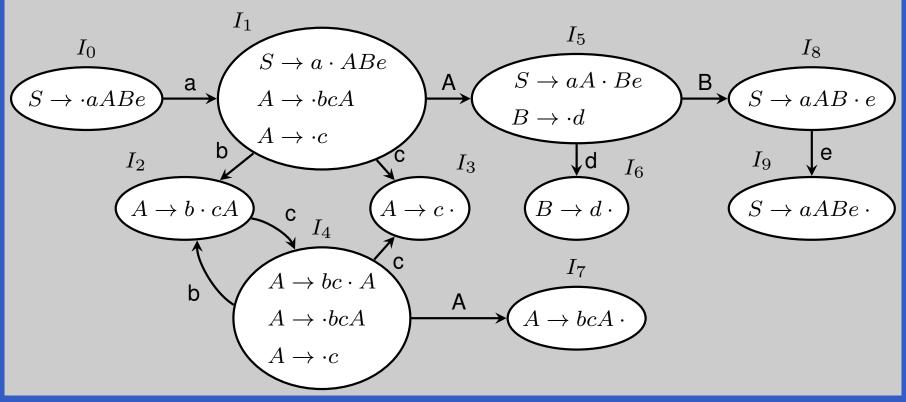
State	Stack (γ)	Input (w)	Move
I_2	ab	ccde	Shift



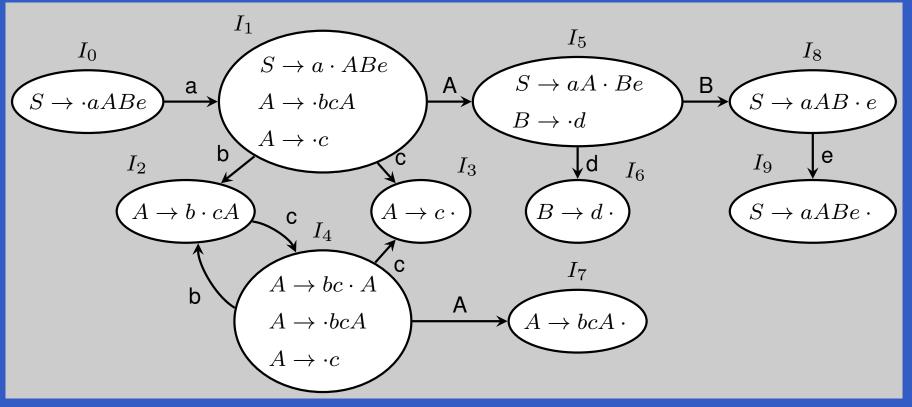
	State	Stack (γ)	Input (w)	Move
_	I_2		ccde	Shift
	I_4	abc	cde	



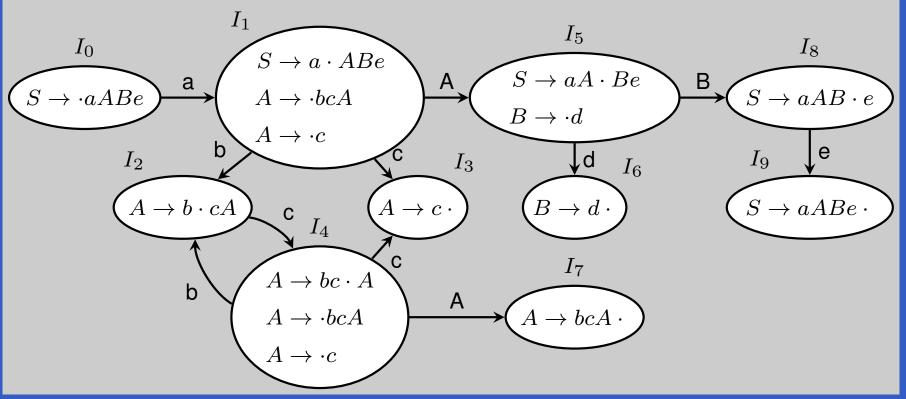
State	Stack (γ)	Input (w)	Move
I_2	ab	ccde	Shift
I_4	abc	cde	Shift



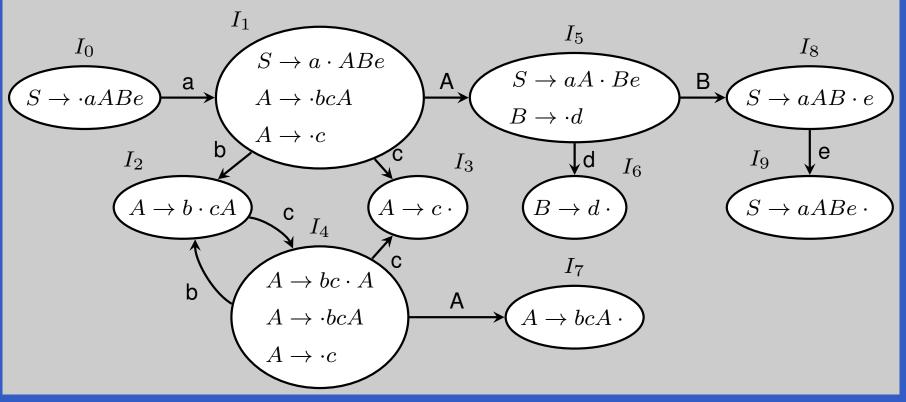
State	Stack (γ)	Input (w)	Move
I_2	ab	ccde	Shift
I_4	abc	cde	Shift
I_3	abcc	de	



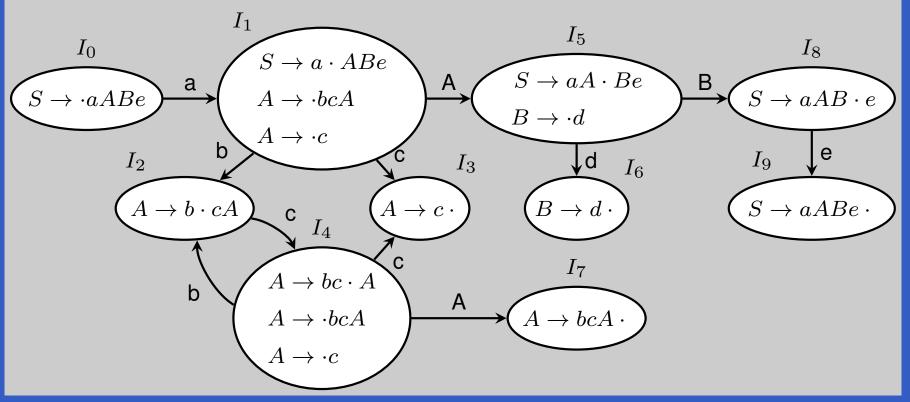
State	Stack (γ)	Input (w)	Move
I_2	ab	ccde	Shift
I_4	abc	cde	Shift
I_3	abcc	de	Reduce by $A \rightarrow c$



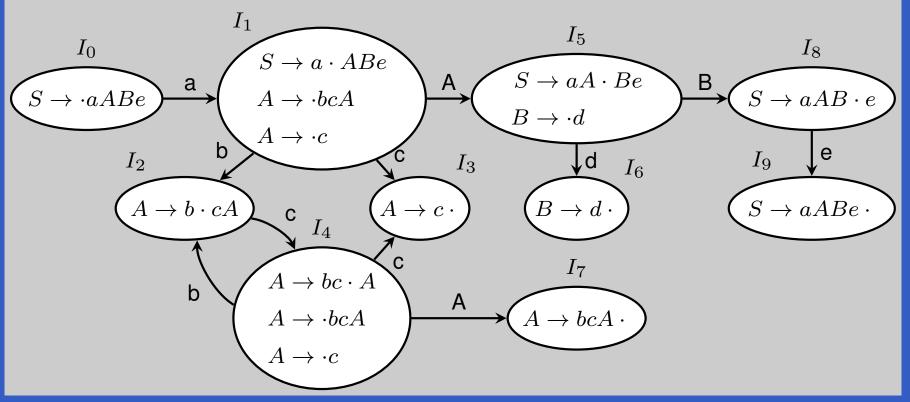
State	Stack (γ)	Input (w)	Move
I_7	abcA	de	



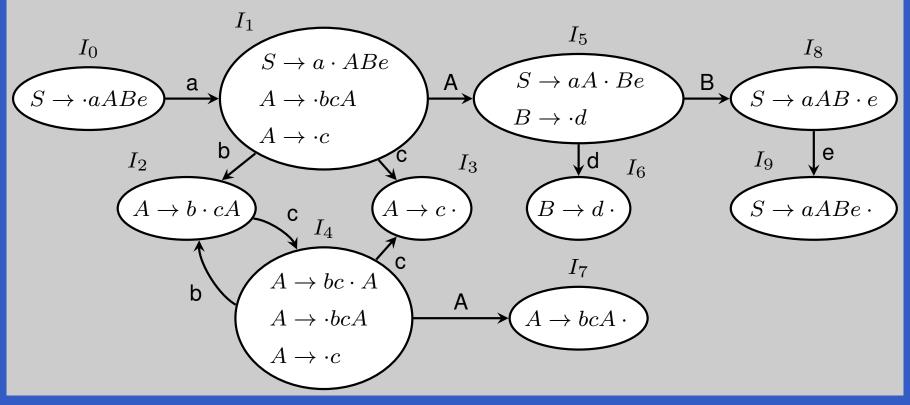
State	Stack (γ)	Input (w)	Move
I_7	abcA	de	Reduce by $A \rightarrow bcA$



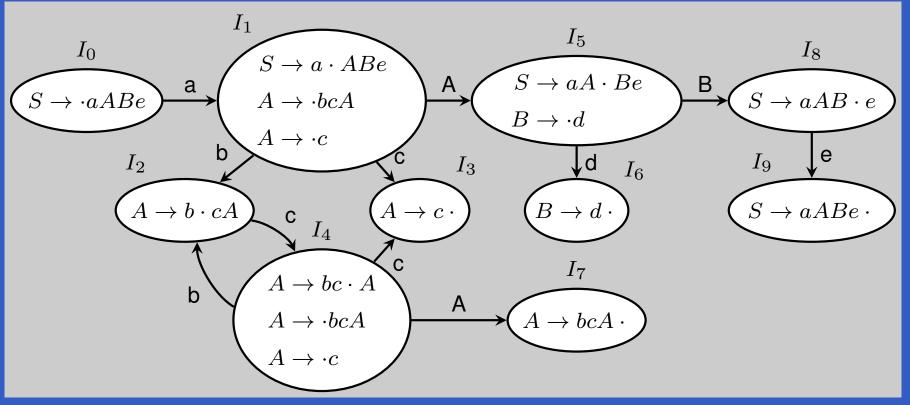
State	Stack (γ)	Input (w)	Move
I_7	abcA	de	Reduce by $A \rightarrow bcA$
I_5	aA	de	



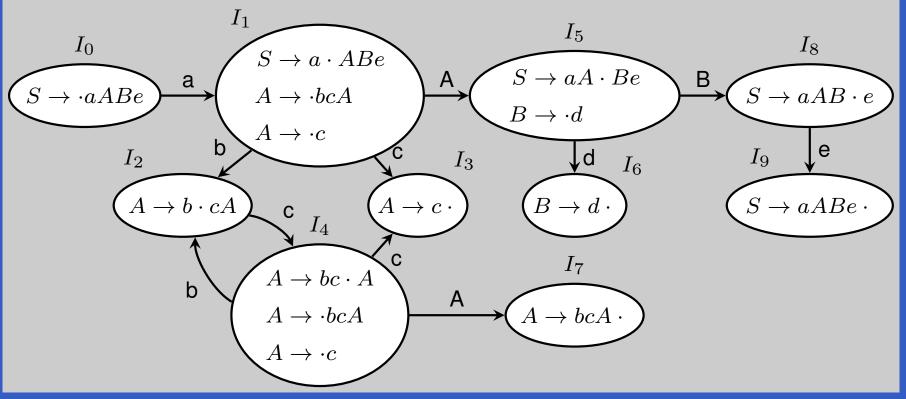
State	Stack (γ)	Input (w)	Move
I_7	abcA	de	Reduce by $A \rightarrow bcA$
I_5	aA	de	Shift



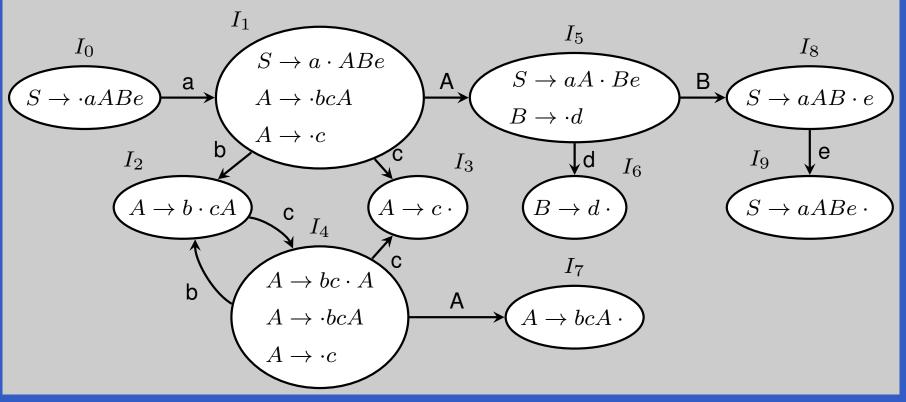
State	Stack (γ)	Input (w)	Move
$\overline{I_7}$	abcA	de	Reduce by $A \rightarrow bcA$
I_5	aA	de	Shift
I_6	aAd	e	



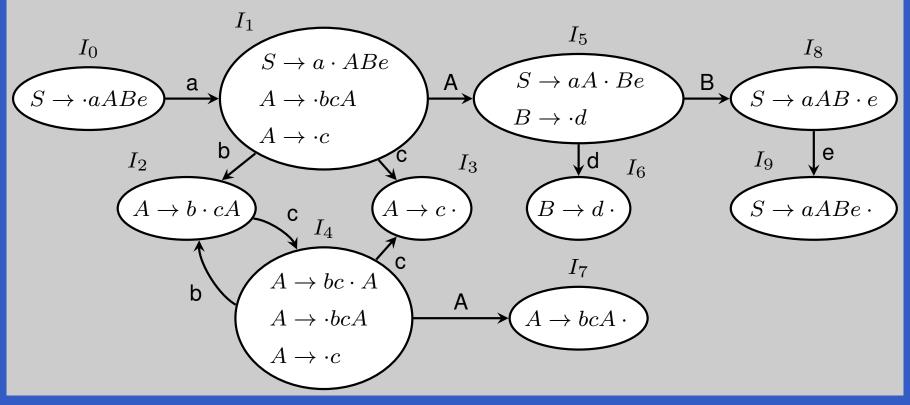
State	Stack (γ)	Input (w)	Move
I_7	abcA	de	Reduce by $A \rightarrow bcA$
I_5	aA	de	Shift
I_6	aAd	e	Reduce by $B \rightarrow d$



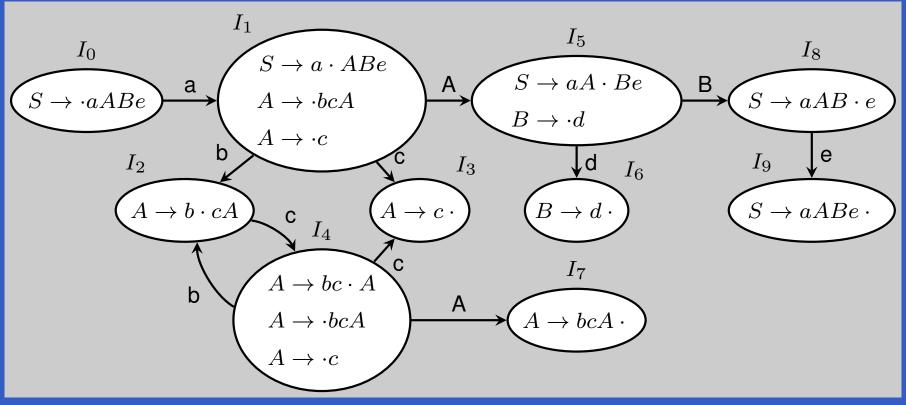
State	Stack (γ)	Input (w)	Move
I_8	aAB	e	



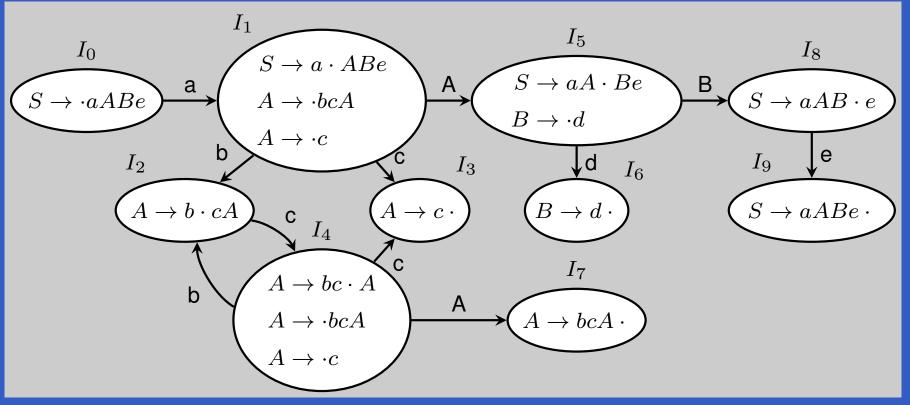
State	Stack (γ)	Input (w)	Move
I_8	aAB	e	Shift



State	Stack (γ)	Input (w)	Move
I_8	aAB	e	Shift
I_9	aABe	ϵ	



State	Stack (γ)	Input (w)	Move
I_8	aAB		Shift
I_9	aABe	ϵ	Reduce by $S \rightarrow aABe$



State	Stack (γ)	Input (w)	Move
I_8	aAB		Shift
I_9	aABe	ϵ	Reduce by $S \rightarrow aABe$
	\overline{S}	ϵ	Done

Complete sequence (γw is right-sentential form):

State	Stack (γ)	Input (w)	Move
$\overline{I_0}$	ϵ	abccde	Shift
I_1	a	bccde	Shift
I_2	ab	ccde	Shift
I_4	abc	cde	Shift
I_3	abcc	de	Reduce by $A \rightarrow c$
I_7	abcA	de	Reduce by $A \rightarrow bcA$
I_5	aA	de	Shift
I_6	aAd	e	Reduce by $B \rightarrow d$
I_8	aAB	e	Shift
I_9	aABe	ϵ	Reduce by $S \rightarrow aABe$
	$\mid S \mid$	ϵ	Done

Cf:
$$S \Rightarrow aABe \Rightarrow aAde \Rightarrow abcAde \Rightarrow abccde$$

Even more clear that the parser carries out the rightmost derivation in reverse if we look at the right-sentential forms γw of the reduction steps only:

$$abccde \iff_{rm}$$

$$abcAde \iff_{rm}$$

$$aAde \iff_{rm}$$

$$aABe \iff_{rm}$$

$$S$$

LR Parsing & Left/Right Recursion (1)

Remark: Note how the *right-recursive* production

$$A \rightarrow bcA$$

causes symbols bc to pile up on the parse stack until a reduction by

$$A \rightarrow c$$

can occur, in turn allowing the stacked symbols to be reduced away.

LR Parsing & Left/Right Recursion (2)

Even clearer if considering parsing of a string like

abcbcbccde or abcbcbcbcbccde

Exercise: Try parsing these!

Left-recursion allows reduction to happen sooner, thus keeping the size of the parse stack down. This is why left-recursive grammars often are preferred for LR parsing.

In practice, LR(0) tends to be a bit too restrictive.

- In practice, LR(0) tends to be a bit too restrictive.
- If we add one symbol of "lookahead" by determining the set of *terminals that possibly could follow a handle* being reduced by a production $A \rightarrow \beta$, then a wider class of grammars can be handled.

- In practice, LR(0) tends to be a bit too restrictive.
- If we add one symbol of "lookahead" by determining the set of *terminals that* possibly could follow a handle being reduced by a production $A \rightarrow \beta$, then a wider class of grammars can be handled.
- Such grammars are called LR(1).

Idea:

Idea:

Associate a lookahead set with items:

$$A \to \alpha \cdot \beta, \{a_1, a_2, \dots, a_n\}$$

Idea:

Associate a lookahead set with items:

$$A \to \alpha \cdot \beta, \{a_1, a_2, \dots, a_n\}$$

 On reduction, a complete item is only valid if the next input symbol belongs to its lookahead set.

Idea:

Associate a lookahead set with items:

$$A \to \alpha \cdot \beta, \{a_1, a_2, \dots, a_n\}$$

- On reduction, a complete item is only valid if the next input symbol belongs to its lookahead set.
- Thus it is OK to have two or more simultaneously valid complete items, as long as their lookahead sets are *disjoint*.

(Similar to *predictive* recursive-descent parsing.)