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This Lecture

• Limitations of context-free languages:
Why checking contextual constraints is
different from checking syntactical constraints.

• Identification (or Name Resolution)

• Block Structure

• Symbol table
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Where Are We?

sequence of characters

scanner

parser

checker

optimizer/

code

generator

sequence of tokens

Abstract Syntax Tree (AST)

verified/annotated AST

target code

Lexical Analysis

Syntactic Analysis/Parsing

Contextual Analysis/checking Static Semantics

(e.g. Type Checking)

Optimization and Code Generation

(possibly many steps involving a number

of intermediary representations)
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Contextual Analysis (1)

Our next major topic is contextual analysis or
checking static semantics.

Among other things, this involves:

• Resolve the meaning of symbols.

• Report undefined symbols.

• Type checking.
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Contextual Analysis (2)

In short, contextual analysis is about ensuring
that a program is statically well-formed.

• But syntax has to do with “form” too.
So what is new?

• Can’t we use context-free grammars (CFG) to
express e.g. type constraints and thus make
the parser do the checking for us?

E.g., grammar productions like:

Cmd → if BoolExpr then Cmd
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Limitations of CFGs (1)

Attempt to express a “declare before use”
requirement using a CFG.
Assumption: only a single variable a:

Prog → DeclA ProgA

ProgA → StmtA ProgA | ǫ

DeclA → int a ;

StmtA → a = ExprA ;

ExprA → a | ExprA + ExprA | Expr

Expr → LitInt | Expr + Expr
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Limitations of CFGs (2)

Generalization to two variables, a and b:
Prog → DeclA ProgA | DeclB ProgB
ProgA → StmtA ProgA | DeclB ProgAB | ǫ

ProgB → StmtB ProgB | DeclA ProgAB | ǫ

ProgAB → StmtAB ProgAB | ǫ

DeclA → int a ;

DeclB → int b ;

StmtA → a = ExprA ;

StmtB → b = ExprB ;

StmtAB → (a | b) = ExprAB ;

ExprA → a | ExprA + ExprA | Expr
ExprB → b | ExprB + ExprB | Expr
ExprAB → a | b | ExprAB + ExprAB | Expr
Expr → LitInt | Expr + Expr
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Limitations of CFGs (3)

Some observations:

• Already for two variables, things get quite
complicated.

• In fact, the number of nonterminals grow
exponentially. E.g., for a set of n variables
V = {ai | 1 ≤ i ≤ n}, we get 2n nonterminals
Expr[W ], one for each W ⊆ V .

• Normally, the number of variables is unlimited.
That would imply infinitely many productions.
No longer a CFG!
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Limitations of CFGs (4)

Attempt to describe simple type constraints using
a CFG:

IntExpr → LitInt

| IntVar

| IntExpr + IntExpr

BoolExpr → false

| true

| BoolVar

| IntExpr < IntExpr

| not BoolExpr

| BoolExpr && BoolExpr
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Limitations of CFGs (5)

Might look reasonable at first sight. However:

• The scheme hinges on partitioning the variables
by name into two groups: integer variables
(IntVar ) and boolean variables (BoolVar ).

• But in most languages the type of a variable
is given by the context, not its name.

• And how could we in general infer argument
types from the name of a procedure or function?

• We should not expect to be able to capture
context-sensitive information using a
context-free grammar.
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Unrestricted Grammars (1)

• These examples do not prove that it is
impossible to achieve what we tried to
achieve using CFGs.

• However, it can be proved that this indeed is
the case: contextual constraints result in
context sensitive or even recursively
enumerable languages; such languages
cannot be described by CFGs.
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Unrestricted Grammars (2)

• Unrestricted grammars with productions

α → β

where α and β both are arbitrary strings
could be used to express arbitrary contextual
constraints.

• However, unrestricted grammars are in fact
equivalent to Turing Machines!
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Expressing Contextual Constraints

Neither Turing Machines nor Unrestricted
Grammars are very practical languages.

• Specifying contextual constraints:

- Informally, using natural language.

- Formally, using a mathematical formalism
like attribute grammars, logical inference rules.

• Implementing contextual checks:

- General purpose programming language.

- Direct support of mathematical formalism,
unifying specification and implementation.
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Contextual Analysis (1)

Two important kinds of contextual constraints:

• Scope rules: visibility; which declarations
take effect where.

• Type rules: internal consistency; ensuring
that every expression computes a value of
acceptable form, i.e., has a valid type.

These are the ones we mainly will be concerned
with in this course.
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Contextual Analysis (2)

Corresponding subphases of the contextual
analysis:

• Identification or Name Resolution: applying
the scope rules in order to relate each applied
identifier occurrence to its declaration.

• Type checking: applying the type rules to
infer the type of each expression, and
compare it with the expected type.
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Contextual Analysis (3)

Many other possible kinds of contextual
constraints. E.g. Java has rules concerning:

• Abstract classes; e.g.:

- Only abstract classes can have abstr. methods:
abstract class A {

abstract void callme();

}

- Abstract classes may not be instantiated:
Not allowed: new A();
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Contextual Analysis (4)

• Final classes; e.g.:

- a final class cannot be extended

- a class cannot be both final and abstract.

• Exceptions; e.g., the set of exceptions a
method can raise must be declared (except
for unchecked exceptions):

public void writeList()

throws IOException { ... }
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Contextual Analysis (5)

• Definite assignment; a local variable must
not be read unless it has been “definitely
assigned before”.
For example, the code fragment

int k, n = 5;

if (n > 2) k = 3;

System.out.println(k);

is rejected.
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Contextual Analysis (6)

An example of a Java "definite assignment" rule:

V is definitely assigned after

if (e) S else T

iff V is definitely assigned after S and V is
definitely assigned after T .

Note: The rule does not take the ultimate
run-time value of e into account. That is what
makes the analysis decidable.
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Identification

Identification (or Name Resolution) is the task
of relating each applied identifier occurrence to
its declaration.

public class C {

int x, n;

void set(int n) { x = n; }

}

In the body of set, the one applied occurrence of

• x refers to the instance variable x

• n refers to the argument n.
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Scope and Scope Rules (1)

The identification process is governed by the
scope rules of the language.

Important terms:

• Scope: the portion of a program over which a
declaration takes effect.

• Block: a program phrase that delimits the
scope of declarations within it.
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Scope and Scope Rules (2)

Consider the MiniTriangle let block command:

let decls in body

The scope of each declaration is the rest of the
block.

For example:

let Scope of m

const m = 10;

const n = m * 2

in

putint(n);
Scope of n
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Scope and Scope Rules (3)

Haskell’s let-expressions:

let id = expr in body

The scope of id includes both expr and body!

For example:

let xs = 1:xs in take 7 xs

Scope of xs
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Scope and Scope Rules (4)

Part II of the coursework uses a version of Mini-
Triangle extended with procedures and functions:

let

const n : Integer = 2;

proc p(x : Integer) begin

... p(x * m) ...

end;

const m : Integer = n * n

in

...

COMP3012/G53CMP: Lecture 5 – p.24/39



Scope and Scope Rules (5)

In the extended version:

• The scope of a declared entity is extended to
include the bodies of all procedures and
functions declared in the same let-block.

• This allows procedures and functions to be
(mutually) recursive.

• However, definition/initialization expressions
for constants/variables must not use functions
defined in the same let-block.

• This avoids calling functions that may refer to
as-yet uninitialized variables.

COMP3012/G53CMP: Lecture 5 – p.25/39

Scope and Scope Rules (6)

In addition to deciding the range of declarations,
the scope rules also also deal with issues like

• whether explicit declarations are required

• whether multiple declarations at the same
level are allowed

• whether shadowing/hiding is allowed.

COMP3012/G53CMP: Lecture 5 – p.26/39

Some Java Scope Rules (1)

From the Java Language Specification ver. 1.0:

• The scope of a member declared in or
inherited by a class type or interface type is
the entire declaration of the class or interface
type. The declaration of a member needs to
appear before it is used only when the use is
in a field initialization expression.

• The scope of a parameter of a method is the
entire body of the method.
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Some Java Scope Rules (2)

• Hiding the name of a local variable is not
permitted. For example, the following code
fragment is rejected:

static int x = 10;

public void foo(int x) {

if (x < 0) {

int x = 10;

...

}

...

}

OK, hides class
variable X

Not OK, hides
parameter X
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Symbol Table

A symbol table, also called identification table
or environment, is used during identification to
keep track of symbols and their attributes, such
as:

• kind of symbol (class name, local variable, etc.)

• scope level

• type

• source code position
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Block Structure (1)

The organisation of the symbol table depends on
the source language’s block structure. Three
main possibilities:

• Monolithic block structure: one common,
global scope.
(Old Basic dialects, Cobol, Assembly lang., . . . )

• Flat block structure: blocks with local scope
enclosed in a global scope. (Fortran)

• Nested block structure: blocks can be
nested to arbitrary depth.
(Ada, C, C++, Java, C#, Haskell, ML, . . . )
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Block Structure (2)

We will focus on nested block structure in the
following because:

• monolithic and flat block structure can be
considered special cases of nested block
structure

• variations on nested block structure is by far
the most common in modern high-level
languages.
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Using the Symbol Table (1)

For a simple language with a declare-before-use
rule, redeclarations not allowed, the symbol table
would be used as follows during identification:

• Initialise the table; e.g., enter the standard
environment.

• When a declaration is encountered:

- check if declared identifier clashes with
existing symbol

- report error if it does

- if not, enter declared identifier into table
along with its attributes.
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Using the Symbol Table (2)

• When an applied identifier occurrence is
encountered:

- look up identifier in table, taking scope
rules into account

- report error if not found

- if found, annotate applied occurrence with
symbol attributes from table.
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Using the Symbol Table (3)

Before identification:

1 let int x = 1

2 in

3 let int y = x * 3

4 in

5 x + y
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Using the Symbol Table (4)

After identification:

let int x = 1

in

let int y =

x [level 0, type int, line 1]

* 3

in

x [level 0, type int, line 1]

+ y [level 1, type int, line 3]

(Textual representation of annotated AST.)
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Using the Symbol Table (5)

Suppose variables have to be declared, and that
redeclarations are not allowed.

1 let int x = 1; int x = x * 3

2 in

3 x + y

During symbol table insert and lookup it would be
discovered that:

• x is declared twice at the same scope level,

• y is not declared at all.
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Using the Symbol Table (6)

• When entering a new block, arrange so that
subsequently entered symbols become
associated with the scope corresponding to
the block (“open scope”).

• When leaving a block, remove/make
inaccessible symbols declared in that block
(“close scope”).
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Using the Symbol Table (7)

1 let int x = 1

2 in

3 (let y = x * 3 in x) + y

• A new scope is opened for the inner
let-block when it is analysed.

• When the inner let-block has been
analysed, its scope is closed.

• It is then discovered that y is no longer in
scope. (However, x is still in scope.)
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Summary

• Contextual analysis includes checking scope
rules and types.

• Contextual constraints lead to context-sensitive
languages and thus cannot be captured by a
context-free grammar.

• Identification is the task of relating each
applied identifier occurrence to its declaration.
A key step for any contextual analysis.

• The Symbol Table or Environment records
information about declared entities and is the
central data structure during contextual analysis.
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