
COMP3012/G53CMP: Lecture 5
Contextual Analysis: Scope I

Henrik Nilsson

University of Nottingham, UK

COMP3012/G53CMP: Lecture 5 – p.1/39

This Lecture

• Limitations of context-free languages:
Why checking contextual constraints is
different from checking syntactical constraints.

• Identification (or Name Resolution)

• Block Structure

• Symbol table

COMP3012/G53CMP: Lecture 5 – p.2/39

Where Are We?

sequence of characters

scanner

parser

checker

optimizer/

code

generator

sequence of tokens

Abstract Syntax Tree (AST)

verified/annotated AST

target code

Lexical Analysis

Syntactic Analysis/Parsing

Contextual Analysis/checking Static Semantics

(e.g. Type Checking)

Optimization and Code Generation

(possibly many steps involving a number

of intermediary representations)

COMP3012/G53CMP: Lecture 5 – p.3/39

Contextual Analysis (1)

Our next major topic is contextual analysis or
checking static semantics.

Among other things, this involves:

• Resolve the meaning of symbols.

• Report undefined symbols.

• Type checking.

COMP3012/G53CMP: Lecture 5 – p.4/39

Contextual Analysis (2)

In short, contextual analysis is about ensuring
that a program is statically well-formed.

• But syntax has to do with “form” too.
So what is new?

• Can’t we use context-free grammars (CFG) to
express e.g. type constraints and thus make
the parser do the checking for us?

E.g., grammar productions like:

Cmd → if BoolExpr then Cmd

COMP3012/G53CMP: Lecture 5 – p.5/39

Limitations of CFGs (1)

Attempt to express a “declare before use”
requirement using a CFG.
Assumption: only a single variable a:

Prog → DeclA ProgA

ProgA → StmtA ProgA | ǫ

DeclA → int a ;

StmtA → a = ExprA ;

ExprA → a | ExprA + ExprA | Expr

Expr → LitInt | Expr + Expr

COMP3012/G53CMP: Lecture 5 – p.6/39

Limitations of CFGs (2)

Generalization to two variables, a and b:
Prog → DeclA ProgA | DeclB ProgB
ProgA → StmtA ProgA | DeclB ProgAB | ǫ

ProgB → StmtB ProgB | DeclA ProgAB | ǫ

ProgAB → StmtAB ProgAB | ǫ

DeclA → int a ;

DeclB → int b ;

StmtA → a = ExprA ;

StmtB → b = ExprB ;

StmtAB → (a | b) = ExprAB ;

ExprA → a | ExprA + ExprA | Expr
ExprB → b | ExprB + ExprB | Expr
ExprAB → a | b | ExprAB + ExprAB | Expr
Expr → LitInt | Expr + Expr

COMP3012/G53CMP: Lecture 5 – p.7/39

Limitations of CFGs (3)

Some observations:

• Already for two variables, things get quite
complicated.

• In fact, the number of nonterminals grow
exponentially. E.g., for a set of n variables
V = {ai | 1 ≤ i ≤ n}, we get 2n nonterminals
Expr[W], one for each W ⊆ V .

• Normally, the number of variables is unlimited.
That would imply infinitely many productions.
No longer a CFG!

COMP3012/G53CMP: Lecture 5 – p.8/39

Limitations of CFGs (4)

Attempt to describe simple type constraints using
a CFG:

IntExpr → LitInt

| IntVar

| IntExpr + IntExpr

BoolExpr → false

| true

| BoolVar

| IntExpr < IntExpr

| not BoolExpr

| BoolExpr && BoolExpr

COMP3012/G53CMP: Lecture 5 – p.9/39

Limitations of CFGs (5)

Might look reasonable at first sight. However:

• The scheme hinges on partitioning the variables
by name into two groups: integer variables
(IntVar) and boolean variables (BoolVar).

• But in most languages the type of a variable
is given by the context, not its name.

• And how could we in general infer argument
types from the name of a procedure or function?

• We should not expect to be able to capture
context-sensitive information using a
context-free grammar.

COMP3012/G53CMP: Lecture 5 – p.10/39

Unrestricted Grammars (1)

• These examples do not prove that it is
impossible to achieve what we tried to
achieve using CFGs.

• However, it can be proved that this indeed is
the case: contextual constraints result in
context sensitive or even recursively
enumerable languages; such languages
cannot be described by CFGs.

COMP3012/G53CMP: Lecture 5 – p.11/39

Unrestricted Grammars (2)

• Unrestricted grammars with productions

α → β

where α and β both are arbitrary strings
could be used to express arbitrary contextual
constraints.

• However, unrestricted grammars are in fact
equivalent to Turing Machines!

COMP3012/G53CMP: Lecture 5 – p.12/39

Expressing Contextual Constraints

Neither Turing Machines nor Unrestricted
Grammars are very practical languages.

• Specifying contextual constraints:

- Informally, using natural language.

- Formally, using a mathematical formalism
like attribute grammars, logical inference rules.

• Implementing contextual checks:

- General purpose programming language.

- Direct support of mathematical formalism,
unifying specification and implementation.

COMP3012/G53CMP: Lecture 5 – p.13/39

Contextual Analysis (1)

Two important kinds of contextual constraints:

• Scope rules: visibility; which declarations
take effect where.

• Type rules: internal consistency; ensuring
that every expression computes a value of
acceptable form, i.e., has a valid type.

These are the ones we mainly will be concerned
with in this course.

COMP3012/G53CMP: Lecture 5 – p.14/39

Contextual Analysis (2)

Corresponding subphases of the contextual
analysis:

• Identification or Name Resolution: applying
the scope rules in order to relate each applied
identifier occurrence to its declaration.

• Type checking: applying the type rules to
infer the type of each expression, and
compare it with the expected type.

COMP3012/G53CMP: Lecture 5 – p.15/39

Contextual Analysis (3)

Many other possible kinds of contextual
constraints. E.g. Java has rules concerning:

• Abstract classes; e.g.:

- Only abstract classes can have abstr. methods:
abstract class A {

abstract void callme();

}

- Abstract classes may not be instantiated:
Not allowed: new A();

COMP3012/G53CMP: Lecture 5 – p.16/39

Contextual Analysis (4)

• Final classes; e.g.:

- a final class cannot be extended

- a class cannot be both final and abstract.

• Exceptions; e.g., the set of exceptions a
method can raise must be declared (except
for unchecked exceptions):

public void writeList()

throws IOException { ... }

COMP3012/G53CMP: Lecture 5 – p.17/39

Contextual Analysis (5)

• Definite assignment; a local variable must
not be read unless it has been “definitely
assigned before”.
For example, the code fragment

int k, n = 5;

if (n > 2) k = 3;

System.out.println(k);

is rejected.

COMP3012/G53CMP: Lecture 5 – p.18/39

Contextual Analysis (6)

An example of a Java "definite assignment" rule:

V is definitely assigned after

if (e) S else T

iff V is definitely assigned after S and V is
definitely assigned after T .

Note: The rule does not take the ultimate
run-time value of e into account. That is what
makes the analysis decidable.

COMP3012/G53CMP: Lecture 5 – p.19/39

Identification

Identification (or Name Resolution) is the task
of relating each applied identifier occurrence to
its declaration.

public class C {

int x, n;

void set(int n) { x = n; }

}

In the body of set, the one applied occurrence of

• x refers to the instance variable x

• n refers to the argument n.
COMP3012/G53CMP: Lecture 5 – p.20/39

Scope and Scope Rules (1)

The identification process is governed by the
scope rules of the language.

Important terms:

• Scope: the portion of a program over which a
declaration takes effect.

• Block: a program phrase that delimits the
scope of declarations within it.

COMP3012/G53CMP: Lecture 5 – p.21/39

Scope and Scope Rules (2)

Consider the MiniTriangle let block command:

let decls in body

The scope of each declaration is the rest of the
block.

For example:

let Scope of m

const m = 10;

const n = m * 2

in

putint(n);
Scope of n

COMP3012/G53CMP: Lecture 5 – p.22/39

Scope and Scope Rules (3)

Haskell’s let-expressions:

let id = expr in body

The scope of id includes both expr and body!

For example:

let xs = 1:xs in take 7 xs

Scope of xs

COMP3012/G53CMP: Lecture 5 – p.23/39

Scope and Scope Rules (4)

Part II of the coursework uses a version of Mini-
Triangle extended with procedures and functions:

let

const n : Integer = 2;

proc p(x : Integer) begin

... p(x * m) ...

end;

const m : Integer = n * n

in

...

COMP3012/G53CMP: Lecture 5 – p.24/39

Scope and Scope Rules (5)

In the extended version:

• The scope of a declared entity is extended to
include the bodies of all procedures and
functions declared in the same let-block.

• This allows procedures and functions to be
(mutually) recursive.

• However, definition/initialization expressions
for constants/variables must not use functions
defined in the same let-block.

• This avoids calling functions that may refer to
as-yet uninitialized variables.

COMP3012/G53CMP: Lecture 5 – p.25/39

Scope and Scope Rules (6)

In addition to deciding the range of declarations,
the scope rules also also deal with issues like

• whether explicit declarations are required

• whether multiple declarations at the same
level are allowed

• whether shadowing/hiding is allowed.

COMP3012/G53CMP: Lecture 5 – p.26/39

Some Java Scope Rules (1)

From the Java Language Specification ver. 1.0:

• The scope of a member declared in or
inherited by a class type or interface type is
the entire declaration of the class or interface
type. The declaration of a member needs to
appear before it is used only when the use is
in a field initialization expression.

• The scope of a parameter of a method is the
entire body of the method.

COMP3012/G53CMP: Lecture 5 – p.27/39

Some Java Scope Rules (2)

• Hiding the name of a local variable is not
permitted. For example, the following code
fragment is rejected:

static int x = 10;

public void foo(int x) {

if (x < 0) {

int x = 10;

...

}

...

}

OK, hides class
variable X

Not OK, hides
parameter X

COMP3012/G53CMP: Lecture 5 – p.28/39

Symbol Table

A symbol table, also called identification table
or environment, is used during identification to
keep track of symbols and their attributes, such
as:

• kind of symbol (class name, local variable, etc.)

• scope level

• type

• source code position

COMP3012/G53CMP: Lecture 5 – p.29/39

Block Structure (1)

The organisation of the symbol table depends on
the source language’s block structure. Three
main possibilities:

• Monolithic block structure: one common,
global scope.
(Old Basic dialects, Cobol, Assembly lang., . . .)

• Flat block structure: blocks with local scope
enclosed in a global scope. (Fortran)

• Nested block structure: blocks can be
nested to arbitrary depth.
(Ada, C, C++, Java, C#, Haskell, ML, . . .)

COMP3012/G53CMP: Lecture 5 – p.30/39

Block Structure (2)

We will focus on nested block structure in the
following because:

• monolithic and flat block structure can be
considered special cases of nested block
structure

• variations on nested block structure is by far
the most common in modern high-level
languages.

COMP3012/G53CMP: Lecture 5 – p.31/39

Using the Symbol Table (1)

For a simple language with a declare-before-use
rule, redeclarations not allowed, the symbol table
would be used as follows during identification:

• Initialise the table; e.g., enter the standard
environment.

• When a declaration is encountered:

- check if declared identifier clashes with
existing symbol

- report error if it does

- if not, enter declared identifier into table
along with its attributes.

COMP3012/G53CMP: Lecture 5 – p.32/39

Using the Symbol Table (2)

• When an applied identifier occurrence is
encountered:

- look up identifier in table, taking scope
rules into account

- report error if not found

- if found, annotate applied occurrence with
symbol attributes from table.

COMP3012/G53CMP: Lecture 5 – p.33/39

Using the Symbol Table (3)

Before identification:

1 let int x = 1

2 in

3 let int y = x * 3

4 in

5 x + y

COMP3012/G53CMP: Lecture 5 – p.34/39

Using the Symbol Table (4)

After identification:

let int x = 1

in

let int y =

x [level 0, type int, line 1]

* 3

in

x [level 0, type int, line 1]

+ y [level 1, type int, line 3]

(Textual representation of annotated AST.)

COMP3012/G53CMP: Lecture 5 – p.35/39

Using the Symbol Table (5)

Suppose variables have to be declared, and that
redeclarations are not allowed.

1 let int x = 1; int x = x * 3

2 in

3 x + y

During symbol table insert and lookup it would be
discovered that:

• x is declared twice at the same scope level,

• y is not declared at all.

COMP3012/G53CMP: Lecture 5 – p.36/39

Using the Symbol Table (6)

• When entering a new block, arrange so that
subsequently entered symbols become
associated with the scope corresponding to
the block (“open scope”).

• When leaving a block, remove/make
inaccessible symbols declared in that block
(“close scope”).

COMP3012/G53CMP: Lecture 5 – p.37/39

Using the Symbol Table (7)

1 let int x = 1

2 in

3 (let y = x * 3 in x) + y

• A new scope is opened for the inner
let-block when it is analysed.

• When the inner let-block has been
analysed, its scope is closed.

• It is then discovered that y is no longer in
scope. (However, x is still in scope.)

COMP3012/G53CMP: Lecture 5 – p.38/39

Summary

• Contextual analysis includes checking scope
rules and types.

• Contextual constraints lead to context-sensitive
languages and thus cannot be captured by a
context-free grammar.

• Identification is the task of relating each
applied identifier occurrence to its declaration.
A key step for any contextual analysis.

• The Symbol Table or Environment records
information about declared entities and is the
central data structure during contextual analysis.

COMP3012/G53CMP: Lecture 5 – p.39/39

	This Lecture
	Where Are We?
	Contextual Analysis (1)
	Contextual Analysis (2)
	Limitations of CFGs (1)
	Limitations of CFGs (2)
	Limitations of CFGs (3)
	Limitations of CFGs (4)
	Limitations of CFGs (5)
	Unrestricted Grammars (1)
	Unrestricted Grammars (2)
	Expressing Contextual Constraints
	Contextual Analysis (1)
	Contextual Analysis (2)
	Contextual Analysis (3)
	Contextual Analysis (4)
	Contextual Analysis (5)
	Contextual Analysis (6)
	Identification
	Scope and Scope Rules (1)
	Scope and Scope Rules (2)
	Scope and Scope Rules (3)
	Scope and Scope Rules (4)
	Scope and Scope Rules (5)
	Scope and Scope Rules (6)
	Some Java Scope Rules (1)
	Some Java Scope Rules (2)
	Symbol Table
	Block Structure (1)
	Block Structure (2)
	Using the Symbol Table (1)
	Using the Symbol Table (2)
	Using the Symbol Table (3)
	Using the Symbol Table (4)
	Using the Symbol Table (5)
	Using the Symbol Table (6)
	Using the Symbol Table (7)
	Summary

