
COMP3012/G53CMP: Lecture 7
A Versatile Design Pattern: Monads

Henrik Nilsson

University of Nottingham, UK

COMP3012/G53CMP: Lecture 7 – p.1/39

Perspective (1)

• Design Pattern [Wikipedia]:

[A] design pattern is a general reusable
solution to a commonly occurring problem
within a given context in software design.

• Example: In an OO Language like Java or C#,
operations on data are tied to classes. Thus:

- Cannot (directly) add a new operation on
data without changing all involved classes.

- The code for an operation gets spread out
across all involved classes.

COMP3012/G53CMP: Lecture 7 – p.2/39

Perspective (2)

• Solution: The Visitor pattern (or double
dispatch):

- Allows operations to be defined separately
from data classes and in one place.

- Allows operations to be defined by simple
“pattern matching” (case analysis).

• Not entirely trivial: takes a lecture to explain.
See:

http://en.wikipedia.org/wiki/

Visitor_pattern

COMP3012/G53CMP: Lecture 7 – p.3/39

This Lecture

Functional languages provides separation
between operations and data, and typically
pattern matching too, “for free”.

However, handling effects in a pure language
requires work because, by definition, there are
no implicit effects in a pure language.

This lecture: A design pattern for effects.

COMP3012/G53CMP: Lecture 7 – p.4/39



A Blessing and a Curse

• The BIG advantage of pure functional
programming is

“everything is explicit;”

i.e., flow of data manifest, no side effects.
Makes it a lot easier to understand large
programs.

• The BIG problem with pure functional
programming is

“everything is explicit.”

Can really add a lot of clutter, especially in
large programs.

COMP3012/G53CMP: Lecture 7 – p.5/39

Example: LTXL Identification (1)

enterVar inserts a variable at the given scope
level and of the given type into an environment.

• Check that no variable with same name has
been defined at the same scope level.

• If not, the new variable is entered, and the
resulting environment is returned.

• Otherwise an error message is returned.

enterVar :: Id -> Int -> Type -> Env

-> Either Env ErrorMsg

COMP3012/G53CMP: Lecture 7 – p.6/39

Example: LTXL Identification (2)

Goals of LTXL identification phase:

• Annotate each applied identifier occurrence
with attributes of the corresponding variable
declaration.
I.e., map unannotated AST Exp () to
annotated AST Exp Attr.

• Report conflicting variable definitions and
undefined variables.

identification ::

Exp () -> (Exp Attr, [ErrorMsg])

COMP3012/G53CMP: Lecture 7 – p.7/39

Example: LTXL Identification (3)

identDefs l env [] = ([], env, [])

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’, ms1++ms2++ms3)

where

(e’, ms1) = identAux l env e

(env’, ms2) =

case enterVar i l t env of

Left env’ -> (env’, [])

Right m -> (env, [m])

(ds’, env’’, ms3) =

identDefs l env’ ds

COMP3012/G53CMP: Lecture 7 – p.8/39



Example: LTXL Identification (4)

Error checking and collection of error messages
arguably added a lot of clutter. The core of the
algorithm is this:

identDefs l env [] = ([], env)

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’)

where

e’ = identAux l env e

env’ = enterVar i l t env

(ds’, env’’) = identDefs l env’ ds

COMP3012/G53CMP: Lecture 7 – p.9/39

Example: A Simple Evaluator

data Exp = Lit Integer

| Add Exp Exp

| Sub Exp Exp

| Mul Exp Exp

| Div Exp Exp

eval :: Exp -> Integer

eval (Lit n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (Sub e1 e2) = eval e1 - eval e2

eval (Mul e1 e2) = eval e1 * eval e2

eval (Div e1 e2) = eval e1 ‘div‘ eval e2

COMP3012/G53CMP: Lecture 7 – p.10/39

Making the evaluator safe (1)

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 + n2)

COMP3012/G53CMP: Lecture 7 – p.11/39

Making the evaluator safe (2)

safeEval (Sub e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 - n2)

COMP3012/G53CMP: Lecture 7 – p.12/39



Making the evaluator safe (3)

safeEval (Mul e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 * n2)

COMP3012/G53CMP: Lecture 7 – p.13/39

Making the evaluator safe (4)

safeEval (Div e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)

COMP3012/G53CMP: Lecture 7 – p.14/39

Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:

• Sequencing of evaluations.

• If one evaluation fail, fail overall.

• Otherwise, make result available to following
evaluations.

COMP3012/G53CMP: Lecture 7 – p.15/39

Example: Numbering trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux (Leaf _) n = (Leaf n, n+1)

ntAux (Node t1 t2) n =

let (t1’, n’) = ntAux t1 n

in let (t2’, n’’) = ntAux t2 n’

in (Node t1’ t2’, n’’)

COMP3012/G53CMP: Lecture 7 – p.16/39



Observations

• Repetitive pattern: threading a counter
through a sequence of tree numbering
computations.

• It is very easy to pass on the wrong version of
the counter!

Can we do better?

COMP3012/G53CMP: Lecture 7 – p.17/39

Maybe viewed as a computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a

that may fail.

• When sequencing possibly failing computations,
the only option in general is to fail overall once
a subcomputation fails.

• I.e. failure is an effect, implicitly affecting
subsequent computations.

• Let’s adopt names reflecting our intentions.

COMP3012/G53CMP: Lecture 7 – p.18/39

Maybe viewed as a computation

Successful computation of a value:
mbReturn :: a -> Maybe a

mbReturn = Just

Failing computation:
mbFail :: Maybe a

mbFail = Nothing

Sequencing of possibly failing computations:
mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b

mbSeq ma f = case ma of

Nothing -> Nothing

Just a -> f a

COMP3012/G53CMP: Lecture 7 – p.19/39

Sequencing evaluations (1)

safeEval (Add e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 + n2)

mbSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a

COMP3012/G53CMP: Lecture 7 – p.20/39



Sequencing evaluations (2)

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = mbReturn n

safeEval (Add e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

mbReturn (n1 + n2)

safeEval (Sub e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

mbReturn (n1 - n2)

COMP3012/G53CMP: Lecture 7 – p.21/39

Sequencing evaluations (4)

safeEval (Mul e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

mbReturn (n1 - n2)

safeEval (Div e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

if n2 == 0

then mbFail

else mbReturn (n1 ‘div‘ n2)

COMP3012/G53CMP: Lecture 7 – p.22/39

Inline mbSeq (1)

Let us check that nothing really changed by
inlining mbSeq and mbReturn:
safeEval (Add e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

mbReturn (n1 + n2)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just a -> (\n1 -> safeEval e2 ...) a

COMP3012/G53CMP: Lecture 7 – p.23/39

Inline mbSeq (2)
=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> safeEval e2 ‘mbSeq‘ (\n2 -> ...)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just a -> (\n2 -> ...) a

COMP3012/G53CMP: Lecture 7 – p.24/39



Inline mbSeq (3)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just n2 -> (Just n1 + n2)

COMP3012/G53CMP: Lecture 7 – p.25/39

Stateful Computations (1)

• A stateful computation consumes a state
and returns a result along with a possibly
updated state.

• The following type synonym captures this
idea:

type S a = Int -> (a, Int)

(Only Int state for the sake of simplicity.)

• A value (function) of type S a can now be
viewed as denoting a stateful computation
computing a value of type a.

COMP3012/G53CMP: Lecture 7 – p.26/39

Stateful Computations (2)

• When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

• I.e. state updating is an effect, implicitly
affecting subsequent computations.
(As we would expect.)

COMP3012/G53CMP: Lecture 7 – p.27/39

Stateful Computations (3)

Computation of a value without changing the state:
sReturn :: a -> S a

sReturn a = \n -> (a, n)

Sequencing of stateful computations:
sSeq :: S a -> (a -> S b) -> S b

sSeq sa f = \n ->

let (a, n’) = sa n

in f a n’

Reading and incrementing the state:
sInc :: S Int

sInc = \n -> (n, n + 1)

COMP3012/G53CMP: Lecture 7 – p.28/39



Numbering trees revisited

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux (Leaf _) =

sInc ‘sSeq‘ \n -> sReturn (Leaf n)

ntAux (Node t1 t2) =

ntAux t1 ‘sSeq‘ \t1’ ->

ntAux t2 ‘sSeq‘ \t2’ ->

sReturn (Node t1’ t2’)

COMP3012/G53CMP: Lecture 7 – p.29/39

Observations

• The “plumbing” has been captured by the
abstractions.

• In particular, there is no longer any risk of
“passing on” the wrong version of the state!

COMP3012/G53CMP: Lecture 7 – p.30/39

Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.

• Both examples could be neatly structured by
introducing identically structured abstractions
that encapsulated the effects:

- A type denoting computations

- A combinator for computing a value without
any effect

- A combinator for sequencing computations

• In fact, both examples are instances of the
general notion of a MONAD.

COMP3012/G53CMP: Lecture 7 – p.31/39

Monads in Functional Programming

A monad is represented by:

• A type constructor

M :: * -> *

M T represents computations of a value of type T.

• A polymorphic function

return :: a -> M a

for lifting a value to a computation.

• A polymorphic function

(>>=) :: M a -> (a -> M b) -> M b

for sequencing computations.
COMP3012/G53CMP: Lecture 7 – p.32/39



Monads in Haskell

In Haskell, the notion of a monad is captured by
a Type Class:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

fail :: String -> m a

fail s = error s

This allows the names of the common functions to be
overloaded, and the sharing of derived definitions.

Note: Simplified account: Not all methods shown
and Applicative is a superclass of Monad.

COMP3012/G53CMP: Lecture 7 – p.33/39

The Maybe monad in Haskell

instance Monad Maybe where

return = Just

Nothing >>= _ = Nothing

(Just x) >>= f = f x

fail s = Nothing

COMP3012/G53CMP: Lecture 7 – p.34/39

The do-notation

Haskell provides convenient syntax for
programming with monads:

do

a <- exp
1

b <- exp
2

return exp3

is syntactic sugar for

exp
1
>>= \a ->

exp
2
>>= \b ->

return exp
3

COMP3012/G53CMP: Lecture 7 – p.35/39

The HMTC Diagnostics Monad

D :: * -> * -- Instances: Monad.

emitInfoD :: SrcPos -> String -> D ()

emitWngD :: SrcPos -> String -> D ()

emitErrD :: SrcPos -> String -> D ()

failD :: SrcPos -> String -> D a

failNoReasonD :: D a

failIfErrorsD :: D ()

stopD :: D a

runD :: D a -> (Maybe a, [DMsg])

(Roughly: The actual HMTC impl. is more refined.)

COMP3012/G53CMP: Lecture 7 – p.36/39



Identification Revisited (1)

Recall:

enterVar :: Id -> Int -> Type -> Env

-> Either Env String

Let’s define a version using the Diagnostics monad:

enterVarD :: Id -> Int -> Type -> Env ->D Env

enterVarD i l t env =

case enterVar i l t env of

Left env’ -> return env’

Right m -> do

emitErrD NoSrcPos m

return env

COMP3012/G53CMP: Lecture 7 – p.37/39

Identification Revisited (2)

Now we can define a monadic version of
identDefs:

identDefs :: Int -> Env -> [(Id,Type,Exp ())]

-> D ([(Id,Type,Exp Attr)], Env)

identDefs l env [] = return ([], env)

identDefs l env ((i,t,e) : ds) = do

e’ <- identAux l env e

env’ <- enterVarD i l t env

(ds’, env’’) <- identDefs l env’ ds

return ((i,t,e’) : ds’, env’’)

COMP3012/G53CMP: Lecture 7 – p.38/39

Identification Revisited (3)

Compare with the “core” identified earlier!

identDefs l env [] = ([], env)

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’)

where

e’ = identAux l env e

env’ = enterVar i l t env

(ds’, env’’) = identDefs l env’ ds

The monadic version is very close to ideal,
without sacrificing functionality, clarity, or
pureness!

COMP3012/G53CMP: Lecture 7 – p.39/39


	Perspective (1)
	Perspective (2)
	This Lecture
	A Blessing and a Curse
	Example: LTXL Identification (1)
	Example: LTXL Identification (2)
	Example: LTXL Identification (3)
	Example: LTXL Identification (4)
	Example: A Simple Evaluator
	Making the evaluator safe (1)
	Making the evaluator safe (2)
	Making the evaluator safe (3)
	Making the evaluator safe (4)
	Any common pattern?
	Example: Numbering trees
	Observations
		exttt {Maybe} viewed as a computation (1)
		exttt {Maybe} viewed as a computation
	Sequencing evaluations (1)
	Sequencing evaluations (2)
	Sequencing evaluations (4)
	Inline 	exttt {mbSeq} (1)
	Inline 	exttt {mbSeq} (2)
	Inline 	exttt {mbSeq} (3)
	Stateful Computations (1)
	Stateful Computations (2)
	Stateful Computations (3)
	Numbering trees revisited
	Observations
	Comparison of the examples
	Monads in Functional Programming
	Monads in Haskell
	The 	exttt {Maybe} monad in Haskell
	The 	exttt {do}-notation
	The HMTC Diagnostics Monad
	Identification Revisited (1)
	Identification Revisited (2)
	Identification Revisited (3)

