Henrik Nilsson

University of Nottingham, UK

COMP3012/G53CMP: Lecture 7 —p.1/39

Perspective (2)

« Solution: The
):
- Allows operations to be defined separately
from data classes and in one place.
- Allows operations to be defined by simple
“pattern matching” (case analysis).

« Not entirely trivial: takes a lecture to explain.
See:

pattern (or

COMP3012/G53CMP: Lecture 7 —p.3/39

Perspective (1)

 Design Pattern [Wikipedia]:
[A] design pattern is a general reusable
solution to a commonly occurring problem
within a given context in software design.

- Example: In an OO Language like Java or C#,
operations on data are tied to classes. Thus:

- Cannot (directly) add a new operation on
data without changing #// involved classes.

- The code for an operation gets
across all involved classes.

COMP3012/G53CMP: Lecture 7 —p.2/39

This Lecture

Functional languages provides separation
between operations and data, and typically
pattern matching too, “for free”.

However, handling ina language
requires work because, by definition, there are
no implicit effects in a pure language.

This lecture: A design pattern for effects.

COMP3012/G53CMP: Lecture 7 —p.4/39

A Blessing and a Curse Example: LTXL Identification (1)

- The BIG advantage of pure functional

programming is enterVar inserts a variable at the given scope

level and of the given type into an environment.

« Check that no variable with same name has

i.e., flow of data manifest, no side effects. been defined at the same scope level.

Makes it a lot easier to understand large
programs. « If not, the new variable is entered, and the

- The BIG problem with pure functional is returned.

programming is « Otherwise an is returned.

. . enterVar :: Id —> Int.—> Type —-> Env
Can really add a lot of clutter, especially in

-> Either Env ErrorMsg
large programs.

Example: LTXL Identification (2) Example: LTXL Identification (3)
Goals of LTXL identification phase: identDefs 1 env [] = ([], env, [1)
« Annotate each applied identifier occurrence identDefs 1 env ((i,t,e) : ds) =
with attributes of the corresponding variable ((i,t,e’) : ds’, env’’, msl++ms2++ms3)
declaration. where
l.e., map unannotated AST to (e’, msl) = identAux 1 env e
annoctaied AST : (env’, ms2) =
. conflicting variable definitions and case enterVar i 1 t env of
undefined variables. Left env’ -> (env’, [])
Right m -> (env, [m])
identification :: (ds’, env’’, ms3) =
Exp ()) —> (Exp Attr, [ErrorMsg]) identDefs 1 env’ ds

COMP3012/G53CMP: Lecture 7 —p.7/39 COMP3012/G53CMP: Lecture 7 —p.8/39

Example: LTXL Identification (4)

Example: A Simple Evaluator

.) data Exp = Lit Integer
Error checking and collection of error messages
| Add Exp Exp
arguably added a lot of clutter. The of the | Sub Exp Exp
algorithm is this:
| Mul Exp Exp
identDefs 1 env [] = ([], env) | Div Exp Exp
identDefs 1 env ((i,t,e) : ds) =
((1,t,e’) : ds’, env’’) eval :: Exp -> Integer
where eval (Lit n) = n
e’ = identAux 1 env e eval (Add el e2) = eval el + eval e2
env’ = enterVar i 1 t env eval (Sub el e2) = eval el - eval e2
(ds’, env’’) = identDefs 1 env’ ds eval (Mul el e2) = eval el % eval e2
eval (Div el e2) = eval el ‘div"' eval e2

_ CONPIEERIUR tecure TP RS _ CONPIEERIUT Lecure T p10%8

Making the evaluator safe (1) Making the evaluator safe (2)
safeEval :: Exp —-> Maybe Integer safeEval (Sub el e2) =
safeEval (Lit n) = Just n case safeEval el of
safeEval (Add el e2) = Nothing —-> Nothing
case safeEval el of Just nl -—>
Nothing —-> Nothing case safeEval e2 of
Just nl —-> Nothing —-> Nothing
case safeEval e2 of Just n2 —-> Just (nl - n2)

Nothing -> Nothing
Just n2 -> Just (nl + n2)

_ CONPIEGRIONT Lecwre e S

COMP3012/G53CMP: Lecture 7 - p.12/39

Making the evaluator safe (3)

safeEval (Mul el e2) =
case safeEval el of
Nothing -> Nothing
Just nl —->
case safeEval e2 of
Nothing -> Nothing
Just n2 —-> Just (nl * n2)

COMP3012/G53CMP: Lecture 7 —p.13/39

Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:
« Sequencing of evaluations.
- If one evaluation fail, fail overall.

- Otherwise, make result available to following
evaluations.

COMP3012/G53CMP: Lecture 7 — p.15/39

Making the evaluator safe (4)

safeEval (Div el e2) =
case safeEval el of
Nothing —-> Nothing
Just nl —>

case safeEval e2 of

Nothing —-> Nothing

Just nz2 —>
if n2 == 0
then Nothing
else Just (nl

Example: Numbering trees

data Tree a = Leaf a | Node (Tree

numberTree :: Tree a —> Tree Int
numberTree t = fst (ntAux t 0)
where
ntAux (Leaf _)
ntAux (Node tl t2)
let (tl’, n’) ntAu
in let (t2’, n’’) = n

in (Node tl’ t27,

(L

‘div' n2)

COMP3012/G53CMP: Lecture 7 — p.14/39

a) (Tree a)

eaf n, n+l)
x tl n

tAux t2 n’

nl’)

COMP3012/G53CMP: Lecture 7 — p.16/39

Observations Maybe viewed as a computation (1)
- Repetitive pattern: threading a counter « Consider a value of type as
through a of tree numbering denoting a of a value of type
that
* It is very easy to pass on the wrong version of « When sequencing possibly failing computations,
the counter! the only option in general is to fail overall once
a subcomputation fails.

Can we do better? o :
. le. , implicitly affecting

subsequent computations.
« Let’s adopt names reflecting our intentions.

Maybe viewed as a computation Sequencing evaluations (1)
Successful computation of a value: safeEval (Add el e2) =
mbReturn :: a —-> Maybe a safeFval o1 B
mbReturn = Just
Failing computation: nl
mbFail :: Maybe a safeEval e2
mbFail = Nothing
Sequencing of possibly failing computations: n2 Just (nl + n2)
mbSeqg :: Maybe a -> (a —-> Maybe b) -> Maybe Db mbSeq ma f =
mbSeq ma f = case ma of ma
Nothing -> Nothing
Just a -> f a a f a

COMP3012/G53CMP: Lecture 7 — p.20/39

_ CONPINAGRIAT Lecwre P12

Sequencing evaluations (2) Sequencing evaluations (4)

safeEval :: Exp —> Maybe Integer safeEval (Mul el e2) =
safeEval (Lit n) = mbReturn n safeEval el ‘mbSeg‘ \nl ->
safeEval (Add el e2) = safeEval e2 ‘mbSeqg‘ \n2 —->
safeEval el ‘mbSeq‘' \nl —> mbReturn (nl — n2)
safeEval e2 ‘mbSeq‘ \n2 —> safeEval (Div el e2) =
mbReturn (nl + n2) safeEval el ‘mbSeqg‘ \nl —->
safeEval (Sub el e2) = safeEval e2 ‘mbSeg‘ \n2 ->
safeEval el ‘mbSeq‘ \nl —> if n2 == 0
safeEval e2 ‘mbSeq‘' \n2 —> then mbFail
mbReturn (nl - n2) else mbReturn (nl ‘div' n2)

COMP3012/G53CMP: Lecture 7 —p.21/39 COMP3012/G53CMP: Lecture 7 — p.22/39

Inline mbSeq (1) Inline mbSeq (2)
Let us check that nothing really changed by safeEval (Add el e2) =
inlining mbSeq and mbReturn: case (safeEval el) of
safeEval (Add el e2) = Nothing —-> Nothing
safeEval el ‘mbSeq‘' \nl —> Just nl -> safeEval e2 ‘mbSeq‘' (\n2 -> ...)
safeEval e2 ‘mbSeq‘ \n2 —-> =
mbReturn (nl + n2) safeEval (Add el e2) =
- case (safeEval el) of
safeEval (Add el e2) = Nothing -> Nothing
case (safeEval el) of Just nl —-> case safeEval e2 of
Nothing -> Nothing Nothing -> Nothing
Just a —> (\nl —> safeEval e2 ...) a Just a -> (\n2 -> ...) a

Inline mbSeq (3) Stateful Computations (1)

- A consumes a state
safeEval (Add el e2) = and returns a result along with a possibly
case (safeEval el) of updated state.

Nothing —> Nothing - The following type synonym captures this

Just nl —-> feEval e2 of ; .
ust n case safeEval e2 o idea:

Nothing -> Nothing
Just n2 -> (Just nl + n2)
(Only Int state for the sake of simplicity.)
+ A value (function) of type can now be
viewed as denoting a stateful computation
computing a value of type

_ COUPINAGTIANT: Loctre - pasee _ CONPIEERINT tecure T paene

Stateful Computations (2) Stateful Computations (3)

Computation of a value without changing the state:

« When sequencing stateful computations, the
sReturn :: a —> S a

resulting state should be passed on to the

next computation. sReturn a = \n -> (a, n)

Sequencing of stateful computations:
sSeq :: S a -> (a >SS b) —>Sb

sSeq sa f = \n —>

. lLe. , implicitly
affecting subsequent computations.
(As we would expect.)

let (a, n’) = sa n
in £ a n’
Reading and incrementing the state:
sInc :: S Int

sInc = \n -> (n, n + 1)

_ CONPINAGRIOT Lecwre T mparee _ CONPIEGRIGUT tecure T pae

Numbering trees revisited Observations
data Tree a = Leaf a | Node (Tree a) (Tree a) « The “plumbing” has been captured by the
abstractions.
numberTree :: Tree a —-> Tree Int

« In particular, there is no longer any risk of

numberTree t = fst (nthux t 0) “passing on” the wrong version of the state!

where
ntAux (Leaf) =
sInc ‘sSeqg' \n —-> sReturn (Leaf n)
ntAux (Node tl t2) =
ntAux tl ‘sSeqg‘' \tl’ ->
ntAux t2 ‘sSeq‘ \t2’ ->
sReturn (Node tl’ t27)

COMP3012/G53CMP: Lecture 7 — p.29/39 COMP3012/G53CMP: Lecture 7 — p.30/39

Comparison of the examples Monads in Functional Programming

« Both examples characterized by sequencing A monad is represented by:
of effectful computations.

- Both examples could be neatly structured by
introducing identically structured abstractions
that encapsulated the effects:

- A type denoting computations
- A combinator for computing a value without

+ A type constructor

represents computations of a value of type
« A polymorphic function

any effect for lifting a value to a computation.
- A combinator for sequencing computations A polymorphic function
« In fact, both examples are instances of the
general notion of a : for sequencing computations.

COMP3012/G53CMP: Lecture 7 —p.31/39 COMP3012/G53CMP: Lecture 7 — p.32/39

Monads in Haskell The Maybe monad in Haskell

In Haskell, the notion of a monad is captured by
a . instance Monad Maybe where

return = Just
class Monad m where

return :: a —> m a

Nothing >>= _ = Nothing
>>= e -> -> ->
() m a (a m b) m b (Just x) >>= f = f x
fail :: String -> m a
fail s = error s

fail s = Nothing
This allows the names of the common functions to be
overloaded, and the sharing of derived definitions.

Simplified account: Not all methods shown
and Applicative is a superclass of Monad.

_ COUPIAGTIANT: Locwre T mpae _ CONPIEERINT tecure T paane

The do-notation The HMTC Diagnostics Monad

Haskell provides convenient syntax for D Bk > ox —— Instances: Monad.
programming with monads: emitInfoD :: SrcPos -> String -> D ()
do emitWngD :: SrcPos —-> String -> D ()
emitErrD :: SrcPos -> String -> D ()
failD :: SrcPos —-> String -> D a
b <- exp,
failNoReasonD :: D a
return exps
_ . failIfErrorsD :: D ()
is syntactic sugar for stopD . D a
erp; >>= \a —> runD :: D a —-> (Maybe a, [DMsgl)

exp, >>= \b —->
return exp, (Roughly: The actual HMTC impl. is more refined.)

_ CONPINAGRIENT Lecure T mp e _ CONPIEERIAUT tecureTmp e

Identification Revisited (1) Identification Revisited (2)

Recall: . . .
Now we can define a monadic version of
enterVar :: Id -> Int -> Type —-> Env identDefs:
-> Either Env String
Let's def . . he Di . d identDefs :: Int -> Env —-> [(Id,Type,Exp ())]
et's derine a version using the |agnostlcs monad: -> D ([(Id,Type,Exp Attr)], Env)
entervarD :: Id -> Int —-> Type —> Env ->D Env identDefs 1 env [] = return ([], env)
entervVarD 1 1 t env = identDefs 1 env ((i,t,e) : ds) = do
case enterVar i 1 t env of e’ <— identAux 1 env e
Left env’ —-> return env’ env’ <- enterVarD i1 1 t env
Right m -> do (ds’, env’’) <- identDefs 1 env’ ds
emitErrD NoSrcPos m return ((i,t,e’) : ds’, env’’)

return env

_ COUPIAGTIENE: Locwre T mpare _ CONPIEERIUT tecure T pase

Identification Revisited (3)

Compare with the “core” identified earlier!

identDefs 1 env [] = ([], env)
identDefs 1 env ((i,t,e) : ds) =
((i,t,e’) : ds’, env’’)
where
e’ = identAux 1 env e
env’ = enterVar i 1 t env
(ds’, env’’) = identDefs 1 env’ ds

The monadic version is very close to ideal,
without sacrificing functionality, clarity, or
pureness!

_ CONPINAGRIET LecureTmpaee

	Perspective (1)
	Perspective (2)
	This Lecture
	A Blessing and a Curse
	Example: LTXL Identification (1)
	Example: LTXL Identification (2)
	Example: LTXL Identification (3)
	Example: LTXL Identification (4)
	Example: A Simple Evaluator
	Making the evaluator safe (1)
	Making the evaluator safe (2)
	Making the evaluator safe (3)
	Making the evaluator safe (4)
	Any common pattern?
	Example: Numbering trees
	Observations
		exttt {Maybe} viewed as a computation (1)
		exttt {Maybe} viewed as a computation
	Sequencing evaluations (1)
	Sequencing evaluations (2)
	Sequencing evaluations (4)
	Inline 	exttt {mbSeq} (1)
	Inline 	exttt {mbSeq} (2)
	Inline 	exttt {mbSeq} (3)
	Stateful Computations (1)
	Stateful Computations (2)
	Stateful Computations (3)
	Numbering trees revisited
	Observations
	Comparison of the examples
	Monads in Functional Programming
	Monads in Haskell
	The 	exttt {Maybe} monad in Haskell
	The 	exttt {do}-notation
	The HMTC Diagnostics Monad
	Identification Revisited (1)
	Identification Revisited (2)
	Identification Revisited (3)

