
COMP3012/G53CMP: Lecture 8
Contextual Analysis: Types and Type Systems I

Henrik Nilsson

University of Nottingham, UK

COMP3012/G53CMP: Lecture 8 – p.1/29

This Lecture

• Types and Type Systems

• Language safety

• Achieving safety through types

- Introduction: relation between static and
dynamic semantics

- Operational dynamic semantics of a small
example language.

Much of this lecture follows parts of the first few
chapters of B. C. Pierce 2002 Types and
Programming Languages closely.

COMP3012/G53CMP: Lecture 8 – p.2/29

Types and Type Systems (1)

Type systems are an example of lightweight
formal methods:

• highly automated

• but with limited expressive power.

A plausible definition (Pierce):

A type system is a tractable syntactic
method for proving the absence of certain
program behaviors by classifying phrases
according to the kinds of values they
compute.

COMP3012/G53CMP: Lecture 8 – p.3/29

Types and Type Systems (2)

Notes on the definition:

• Static checking implied as the goal is to
prove absence of certain errors.

• Done by classifying syntactic phrases (or
terms) according to the kinds of value they
compute: a type system computes a static
approximation of the run-time behaviour.

COMP3012/G53CMP: Lecture 8 – p.4/29

Types and Type Systems (3)

Example: if known that two program fragments
exp1 and exp2 compute integers (classification),
then it is safe to add those numbers together
(absence of errors):

exp1 + exp2

Also known that the result is an integer. While
not known exactly which integers are involved, at
least known they are integers and nothing else
(static approximation).

COMP3012/G53CMP: Lecture 8 – p.5/29

Types and Type Systems (4)

• “Dynamically typed” languages do not have a
type system according to this definition; they
should really be called dynamically checked.

Example. In a dynamically checked language,
exp1 + exp2 would be evaluated as follows:

• Evaluate exp1 and exp2

• Add results together in a manner depending
on their types (integer addition, floating point
addition, . . . ), or signal error if not possible.

COMP3012/G53CMP: Lecture 8 – p.6/29

Types and Type Systems (5)

• A type system is necessarily conservative:
some well-behaved programs will be rejected.

For example, typically

if complex test then S else type error

will be rejected as ill-typed, even if complex test

actually always evaluates to true because that

cannot be automatically proved in general.

COMP3012/G53CMP: Lecture 8 – p.7/29

Types and Type Systems (6)

• A type system checks for certain kinds of bad
program behaviour, or run-time errors.
Exactly which depends on the type system
and the language design.

For example: current main-stream type systems
typically

do check that arithmetic operations only
are done on numbers
do not check that the second operand of
division is not zero, that array indices are
within bounds.

COMP3012/G53CMP: Lecture 8 – p.8/29

Types and Type Systems (7)

• The safety or soundness of a type system
must be judged with respect to its own set of
run-time errors.

COMP3012/G53CMP: Lecture 8 – p.9/29



Language Safety (1)

Language safety is a contentious notion. A
possible definition (Pierce):

A safe language is one that protects its
own abstractions.

For example: a Java object should behave as an
object; e.g. it would be bad if it was destroyed by
creation of some other object.

Other examples: lexical scope rules, visibility at-

tributes (public, protected, . . . ).

COMP3012/G53CMP: Lecture 8 – p.10/29

Language Safety (2)

• Language safety not the same as static
typing: safety can be achieved through static
typing and/or dynamic run-time checks.

• Scheme is a dynamically checked safe language.

• Even statically typed languages usually use
some dynamic checks; e.g.:

- checking of array bounds

- down-casting (e.g. Java)

- checking for division by zero

- pattern-matching failure

COMP3012/G53CMP: Lecture 8 – p.11/29

Language Safety (3)

Some examples of statically and dynamically
checked safe and unsafe high-level languages:

Statically chkd Dynamically chkd

Safe ML, Haskell,
Java

Lisp,
Scheme,
Perl, Python,
Postscript

Unsafe C, C++
Certain Basic
dialects

COMP3012/G53CMP: Lecture 8 – p.12/29

Advantages of Typing (1)

• Detecting errors early
Programs in richly typed languages often "just
work". Why?

- Simple, common mistakes very often lead
to type inconsistencies.

- Programmers forced to think a bit harder.

• Enforcing disciplined programming
Type systems are the backbone of

- Modules

- Classes

COMP3012/G53CMP: Lecture 8 – p.13/29

Advantages of Typing (2)

• Documentation

- Unlike comments, type signatures will
always remain current.

• Efficiency

- First use of types in computing was to
distinguish between integer and floating
point numbers.

- Elimination of many of the dynamic checks
that otherwise would have been needed to
guarantee safety.

COMP3012/G53CMP: Lecture 8 – p.14/29

Disadvantages of Typing

Type systems sometimes do get in the way:

• Simple things can become quite complicated
if have to work around the type system.
(Example: heterogeneous lists in Haskell)

• Sometimes it becomes impossible to do what
one wants to do, at least not without loss of
efficiency.

Increasingly sophisticated type systems, which
keep track of more invariants, can help.

But that can make the type systems harder to
understand and less automatic.

COMP3012/G53CMP: Lecture 8 – p.15/29

Static and Dynamic Semantics

In summary:

• A type system statically proves properties
about the dynamic behaviour of a programs.

• To make precise exactly what these
properties are, and formally prove that a type
system achieves its goals, both the

- static semantics

- dynamic semantics

must first be formalized.

COMP3012/G53CMP: Lecture 8 – p.16/29

Example Language: Abstract Syntax

Example language. (Will be extended later.)

t → terms:

true constant true

| false constant false

| if t then t else t conditional

| 0 constant zero

| succ t successor

| pred t predecessor

| iszero t zero test

COMP3012/G53CMP: Lecture 8 – p.17/29

Values (1)

The values of a language are a subset of the
terms that are possible results of evaluation.

I.e. the values are the meaning of terms
according to the dynamic semantics of the
language.

• The evaluation rules are going to be such that
no evaluation is possible for values.

• A term to which no evaluation rule applies is a
normal form.

• All values are normal forms.
COMP3012/G53CMP: Lecture 8 – p.18/29



Values (2)

v → values:

true true value

| false false value

| nv numeric value

nv → numeric values:

0 zero value

| succ nv successor value

COMP3012/G53CMP: Lecture 8 – p.19/29

One Step Evaluation Relation (1)

t −→ t′ is an evaluation relation on terms. Read:

t evaluates to t′ in one step.

The evaluation relation constitutes an operational
(dynamic) semantics for the example language.

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t′
1

if t1 then t2 else t3
−→ if t′

1
then t2 else t3

(E-IF)

COMP3012/G53CMP: Lecture 8 – p.20/29

Evaluation Relation??? (1)

• Recall that a mathematical relation can be
understood as a (possibly infinite) set of pairs
of “related things”. For example:

{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3)} ⊆ (≤)

• The idea of our “one step evaluation relation”
is that the “related things” are terms and that
one term is related to another iff the first
evaluates to the second in one step.

• For example:

(if true then succ 0 else 0,succ 0) ∈ (−→)

COMP3012/G53CMP: Lecture 8 – p.21/29

Evaluation Relation??? (2)

• But the evaluation relation is infinite . . .
so we can’t enumerate all pairs.

• Instead, (schematic) inference rules are
used to specify relations:

Premise1 Premise2 . . . Premisen

Conclusion

(en.wikipedia.org/wiki/Rule_of_inference)

• If there are no premises, the line is often omitted:

Conclusion or Conclusion

COMP3012/G53CMP: Lecture 8 – p.22/29

Evaluation Relation??? (3)

• Schematic means that universally quantified
variables are allowed in the rules. For example:

if true then t2 else t3 −→ t2

• Such a rule schema actually stands for an
infinite set of rules:

. . .

if true then 0 else 0 −→ 0

if true then succ 0 else 0 −→ succ 0

if true then true else false −→ true

. . .
COMP3012/G53CMP: Lecture 8 – p.23/29

Evaluation Relation??? (4)

• The domain of a variable is often specified by
naming conventions. E.g. the name of a
variable may indicate some specific syntactic
category such as t, v, or nv :

t1 −→ t′
1

if t1 then t2 else t3
−→ if t′

1
then t2 else t3

pred (succ nv 1) −→ nv 1

COMP3012/G53CMP: Lecture 8 – p.24/29

One Step Evaluation Relation (2)

t1 −→ t′
1

succ t1 −→ succ t′
1

(E-SUCC)

pred 0 −→ 0 (E-PREDZERO)

pred (succ nv 1) −→ nv 1 (E-PREDSUCC)

t1 −→ t′
1

pred t1 −→ pred t′
1

(E-PRED)

COMP3012/G53CMP: Lecture 8 – p.25/29

One Step Evaluation Relation (3)

iszero 0 −→ true (E-ISZEROZERO)

iszero (succ nv 1) −→ false (E-ISZEROSUCC)

t1 −→ t′
1

iszero t1 −→ iszero t′
1

(E-ISZERO)

COMP3012/G53CMP: Lecture 8 – p.26/29

One Step Evaluation Relation (4)

Let’s evaluate some terms according to −→:

• pred (pred 0)

• if (iszero (pred (succ 0)))
then (pred 0) else (succ 0)

• if 0 then 0 else 0

(On the whiteboard.)

COMP3012/G53CMP: Lecture 8 – p.27/29



Values and Stuck Terms

Note that:

• Values cannot be evaluated further. E.g.:

- true

- 0

- succ (succ 0)

• Certain “obviously nonsensical” states are
stuck: the term cannot be evaluated further,
but it is not a value. For example:

if 0 then pred 0 else 0

COMP3012/G53CMP: Lecture 8 – p.28/29

Stuckness and Run-Time Errors

• We let the notion of getting stuck model
run-time errors.

• The goal of a type system is thus to
guarantee that a program never gets stuck!

These ideas will be made more precise next time.

COMP3012/G53CMP: Lecture 8 – p.29/29


	This Lecture
	Types and Type Systems (1)
	Types and Type Systems (2)
	Types and Type Systems (3)
	Types and Type Systems (4)
	Types and Type Systems (5)
	Types and Type Systems (6)
	Types and Type Systems (7)
	Language Safety (1)
	Language Safety (2)
	Language Safety (3)
	Advantages of Typing (1)
	Advantages of Typing (2)
	Disadvantages of Typing
	Static and Dynamic Semantics
	Example Language: Abstract Syntax
	Values (1)
	Values (2)
	One Step Evaluation Relation (1)
	Evaluation Relation??? (1)
	Evaluation Relation??? (2)
	Evaluation Relation??? (3)
	Evaluation Relation??? (4)
	One Step Evaluation Relation (2)
	One Step Evaluation Relation (3)
	One Step Evaluation Relation (4)
	Values and Stuck Terms
	Stuckness and Run-Time Errors

