
COMP3012/G53CMP: Lecture 9
Contextual Analysis: Types and Type Systems II

Henrik Nilsson

University of Nottingham, UK

COMP3012/G53CMP: Lecture 9 – p.1/34

This Lecture

• Recapitulation: our example language,
stuck terms, type systems.

• Basic typing rules

• Safety = Progress + Preservation

• Extensions: typing let-expressions and
functions

Much of this lecture follows parts of the first few
chapters of B. C. Pierce 2002 Types and
Programming Languages closely.

COMP3012/G53CMP: Lecture 9 – p.2/34

Recap: Example Language

Abstract syntax for the example language:

t → terms:

true constant true

| false constant false

| if t then t else t conditional

| 0 constant zero

| succ t successor

| pred t predecessor

| iszero t zero test

COMP3012/G53CMP: Lecture 9 – p.3/34

Recap: Values

The values of a language are a subset of the
terms that are possible results of evaluation.

v → values:

true true value

| false false value

| nv numeric value

nv → numeric values:

0 zero value

| succ nv successor value

Values are normal forms: they cannot be
evaluated further.

COMP3012/G53CMP: Lecture 9 – p.4/34



Recap: One Step Evaluation Rel. (1)

t −→ t′ is an evaluation relation on terms. Read:

t evaluates to t′ in one step.

The evaluation relation constitute an operational
semantics for the example language.

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t′1
if t1 then t2 else t3
−→ if t′1 then t2 else t3

(E-IF)

COMP3012/G53CMP: Lecture 9 – p.5/34

Recap: One Step Evaluation Rel. (2)

t1 −→ t′1
succ t1 −→ succ t′1

(E-SUCC)

pred 0 −→ 0 (E-PREDZERO)

pred (succ nv 1) −→ nv 1 (E-PREDSUCC)

t1 −→ t′1
pred t1 −→ pred t′1

(E-PRED)

COMP3012/G53CMP: Lecture 9 – p.6/34

Recap: One Step Evaluation Rel. (3)

iszero 0 −→ true (E-ISZEROZERO)

iszero (succ nv 1) −→ false (E-ISZEROSUCC)

t1 −→ t′1
iszero t1 −→ iszero t′1

(E-ISZERO)

COMP3012/G53CMP: Lecture 9 – p.7/34

Recap: One Step Evaluation Rel. (4)

Evaluation of:

if (iszero (pred (succ 0))) then (pred 0) else (succ 0)

Step 1:

pred (succ 0) −→ 0
E-PREDSUCC

iszero (pred (succ 0)) −→ iszero 0
E-ISZERO

if (iszero (pred (succ 0))) then (pred 0) else (succ 0)

−→ if (iszero 0) then (pred 0) else (succ 0)

E-IF

COMP3012/G53CMP: Lecture 9 – p.8/34



Recap: One Step Evaluation Rel. (5)

Step 2:

iszero 0 −→ true
E-ISZEROZERO

if (iszero 0) then (pred 0) else (succ 0)

−→ if true then (pred 0) else (succ 0)

E-IF

Step 3:

if true then (pred 0) else (succ 0) −→ pred 0
E-IFTRUE

Step 4:

pred 0 −→ 0
E-PREDZERO

COMP3012/G53CMP: Lecture 9 – p.9/34

Stuck Terms (1)

• Certain “obviously nonsensical” states are
stuck: the term cannot be evaluated further,
but it is not a value. For example:

if 0 then pred 0 else 0

• Definition: A term is stuck if it is a normal
form but not a value.

• Why stuck???

- The program is not well-defined according
to the dynamic semantics of the language.

- We are attempting to break the
abstractions of the language.

COMP3012/G53CMP: Lecture 9 – p.10/34

Stuck Terms (2)

• We let the notion of getting stuck model
run-time errors.

COMP3012/G53CMP: Lecture 9 – p.11/34

Recap: Type Systems

Definitions (Pierce):

• A type system is a tractable syntactic method
for proving the absence of certain program
behaviors by classifying phrases according to
the kinds of values they compute.

• A safe language is one that protects its
abstractions.

Our goal is thus a type system that rules out
semantically ill-defined programs, i.e. that
guarantees that a program never gets stuck!

COMP3012/G53CMP: Lecture 9 – p.12/34



Why Should We Care About Safety?

• One reason: security.

• C/C++ is unsafe: buffer overruns possible.

• Buffer overruns allows input data to be
executed as code.

• One of the most common security holes: Had
a safe variant of C been used, one might
speculate that billions of dollars would have
been saved.

Today, we’re going to see how to go about
proving that the design of a language is safe.

COMP3012/G53CMP: Lecture 9 – p.13/34

Types

At this point, there are only two types, booleans
and the natural numbers:

T → types:

Bool type of booleans

| Nat type of natural numbers

COMP3012/G53CMP: Lecture 9 – p.14/34

Typing Relation

We will define a typing relation between terms
and types:

t : T

Read:

t has type T

A term that has a type, i.e., is related to a type by
such a typing relation, is said to be well-typed.

The typing relation will be defined by (schematic)
typing rules, in the same way we defined the
evaluation relation.

COMP3012/G53CMP: Lecture 9 – p.15/34

Typing Rules

true : Bool (T-TRUE)

false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(T-IF)

0 : Nat (T-ZERO)

t1 : Nat
succ t1 : Nat

(T-SUCC)

t1 : Nat
pred t1 : Nat

(T-PRED)

t1 : Nat
iszero t1 : Bool

(T-ISZERO)

COMP3012/G53CMP: Lecture 9 – p.16/34



Exercise

What (if any) is the type of the following terms?

• if (iszero (succ 0)) then (succ 0) else 0

• if 0 then pred 0 else 0

COMP3012/G53CMP: Lecture 9 – p.17/34

Safety = Progress + Preservation (1)

The most basic property of a type system: safety,
or “well typed programs do not go wrong”,
where “wrong” means entering a “stuck state”.

This breaks down into two parts:

• Progress: A well-typed term is not stuck.

• Preservation: If a well-typed term takes a
step of evaluation, then the resulting term is
also well-typed.

Together, these two properties say that a
well-typed term can never reach a stuck state
during evaluation.

COMP3012/G53CMP: Lecture 9 – p.18/34

Safety = Progress + Preservation (2)

Formally:

• THEOREM [PROGRESS]: Suppose that t is
a well-typed term (i.e., t : T ), then either t is a
value or else there is some t′ such that t −→ t′.

PROOF: By induction on a derivation of t : T .

• THEOREM [PRESERVATION]:
If t : T and t −→ t′, then t′ : T .

PROOF: By induction on a derivation of t : T .

(Strong form: exact type T preserved.)

COMP3012/G53CMP: Lecture 9 – p.19/34

Progress: A Proof Fragment (1)

The relevant typing and evaluation rules for the
case T-IF:

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(T-IF)

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t′1
if t1 then t2 else t3
−→ if t′1 then t2 else t3

(E-IF)

COMP3012/G53CMP: Lecture 9 – p.20/34



Progress: A Proof Fragment (2)

A typical case when proving Progress by
induction on a derivation of t : T .

Case T-IF: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By ind. hyp, either t1 is a value, or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then
it must be either true or false, in which case
either E-IFTRUE or E-IFFALSE applies to t. On
the other hand, if t1 −→ t′1, then by E-IF,
t −→ if t′1 then t2 else t3.

COMP3012/G53CMP: Lecture 9 – p.21/34

Exceptions (1)

What about terms like

• division by zero

• head of empty list

• array indexing out of bounds (like buffer overrun)

that usually are considered well-typed?

If the type system does not rule them out, we
need to differentiate those from stuck terms, or
we can no longer claim that “well-typed programs
do not go wrong”!

COMP3012/G53CMP: Lecture 9 – p.22/34

Exceptions (2)

Idea: allow exceptions to be raised, and make it
well-defined what happens when exceptions are
raised.

For example:

• introduce a term error

• introduce evaluation rules like

head [] −→ error

• typing rule: error : T

COMP3012/G53CMP: Lecture 9 – p.23/34

Exceptions (3)

• introduce propagation rules to ensure that the
entire program evaluates to error once the
exception has been raised (unless there is
some exception handling mechanism), e.g.:

pred error −→ error

• change the Progress theorem slightly to allow
for exceptions:

THEOREM [PROGRESS]: Suppose that
t is a well-typed term (i.e., t : T ), then
either t is a value or error, or else
there is some t′ with t −→ t′.

COMP3012/G53CMP: Lecture 9 – p.24/34



Extension: Let-bound Variables (1)

Syntactic extension:

t → . . . terms:

| x variable

| let x = t in t let-expression

New evaluation rules:

let x = v1 in t2 −→ [x 7→ v1]t2 (E-LETV)

t1 −→ t′1
let x = t1 in t2 −→ let x = t′1 in t2

(E-LET)

COMP3012/G53CMP: Lecture 9 – p.25/34

Extension: Let-bound Variables (2)

We now need a typing context or type
environment to keep track of types of variables
(an abstract version of a “symbol table”).

The typing relation thus becomes a ternary
relation:

Γ ⊢ t : T

Read: term t has type T in type environment Γ.

COMP3012/G53CMP: Lecture 9 – p.26/34

Extension: Let-bound Variables (3)

Environment-related notation:

• Extending an environment:

Γ, x : T

The new declaration is understood to replace
any earlier declaration for a variable with the
same name.

• Stating that the type of a variable is given by
an environment:

x : T ∈ Γ or Γ(x) = T

COMP3012/G53CMP: Lecture 9 – p.27/34

Extension: Let-bound Variables (4)

Updated typing rules:

Γ ⊢ true : Bool (T-TRUE)

Γ ⊢ false : Bool (T-FALSE)

Γ ⊢ t1 : Bool Γ ⊢ t2 : T Γ ⊢ t3 : T
Γ ⊢ if t1 then t2 else t3 : T

(T-IF)

COMP3012/G53CMP: Lecture 9 – p.28/34



Extension: Let-bound Variables (5)

Updated typing rules:

Γ ⊢ 0 : Nat (T-ZERO)

Γ ⊢ t1 : Nat
Γ ⊢ succ t1 : Nat

(T-SUCC)

Γ ⊢ t1 : Nat
Γ ⊢ pred t1 : Nat

(T-PRED)

Γ ⊢ t1 : Nat
Γ ⊢ iszero t1 : Bool

(T-ISZERO)

COMP3012/G53CMP: Lecture 9 – p.29/34

Extension: Let-bound Variables (6)

New typing rules:

x : T ∈ Γ
Γ ⊢ x : T

(T-VAR)

Γ ⊢ t1 : T1 Γ, x : T1 ⊢ t2 : T2
Γ ⊢ let x = t1 in t2 : T2

(T-LET)

COMP3012/G53CMP: Lecture 9 – p.30/34

Extension: Let-bound Variables (7)

Recursive bindings?

Typing is straightforward if the recursively-defined
entity is explicitly typed:

Γ, x : T1 ⊢ t1 : T1 Γ, x : T1 ⊢ t2 : T2
Γ ⊢ let x : T1 = t1 in t2 : T2

(T-LET)

If not, the question is if T1 is uniquely defined
(and in a type checker how to compute this type):

Γ, x : T1 ⊢ t1 : T1 Γ, x : T1 ⊢ t2 : T2
Γ ⊢ let x = t1 in t2 : T2

(T-LET)

(Evaluation is more involved: we leave that for now.)
COMP3012/G53CMP: Lecture 9 – p.31/34

Extension: Functions (1)

Syntactic extension:

t → . . . terms:

| λx :T.t abstraction

| t t application

v → . . . values:

| λx :T.t abstraction value

T → . . . types:

| T → T type of functions

COMP3012/G53CMP: Lecture 9 – p.32/34



Extension: Functions (2)

New evaluation rules:
t1 −→ t′1

t1 t2 −→ t′1 t2
(E-APP1)

t2 −→ t′2
v1 t2 −→ v1 t

′
2

(E-APP2)

(λx :T11.t12)v2 −→ [x 7→ v2]t12 (E-APPABS)

Note:

• left to right evaluation order: first the function
(E-APP1), then the argument (E-APP2)

• call-by-value: the argument fully evaluated
before function “invoked” (E-APPABS).

COMP3012/G53CMP: Lecture 9 – p.33/34

Extension: Functions (3)

New typing rules:

Γ, x : T1 ⊢ t2 : T2
Γ ⊢ λx :T1.t2 : T1 → T2

(T-ABS)

Γ ⊢ t1 : T11 → T12 Γ ⊢ t2 : T11
Γ ⊢ t1 t2 : T12

(T-APP)

COMP3012/G53CMP: Lecture 9 – p.34/34


	This Lecture
	Recap: Example Language
	Recap: Values
	Recap: One Step Evaluation Rel. (1)
	Recap: One Step Evaluation Rel. (2)
	Recap: One Step Evaluation Rel. (3)
	Recap: One Step Evaluation Rel. (4)
	Recap: One Step Evaluation Rel. (5)
	Stuck Terms (1)
	Stuck Terms (2)
	Recap: Type Systems
	Why Should We Care About Safety?
	Types
	Typing Relation
	Typing Rules
	Exercise
	Safety = Progress + Preservation (1)
	Safety = Progress + Preservation (2)
	Progress: A Proof Fragment (1)
	Progress: A Proof Fragment (2)
	Exceptions (1)
	Exceptions (2)
	Exceptions (3)
	Extension: Let-bound Variables (1)
	Extension: Let-bound Variables (2)
	Extension: Let-bound Variables (3)
	Extension: Let-bound Variables (4)
	Extension: Let-bound Variables (5)
	Extension: Let-bound Variables (6)
	Extension: Let-bound Variables (7)
	Extension: Functions (1)
	Extension: Functions (2)
	Extension: Functions (3)

