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This Lecture

One aspect of run-time organisation:
stack-based storage allocation

• Lifetime and storage

• Basic stack allocation:

- stack frames

- dynamic links

• Allocation for nested procedures:

- non-local variable access

- static links
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Storage Areas

• Static storage: storage for entities that live
throughout an execution.
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Storage Areas

• Static storage: storage for entities that live
throughout an execution.

• Stack storage: storage allocated
dynamically, but deallocation must be carried
out in the opposite order to allocation.
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Storage Areas

• Static storage: storage for entities that live
throughout an execution.

• Stack storage: storage allocated
dynamically, but deallocation must be carried
out in the opposite order to allocation.

• Heap storage: region of the memory where
entities can be allocated and deallocated
dynamically as needed, in any order.
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Example: Lifetime (1)

var x, y: ...

proc P()

var p1, p2: ...

begin ... end

proc Q()

var q1, q2: ...

begin ... if ... Q(); ... end

proc R()

var r1, r2: ...

begin ... Q() ... end

begin ... P() ... R() ... end
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Example: Lifetime (2)

time

x, y, z

p1, p2 r1, r2

q1, q2 (1)

q1, q2 (2)

start endP() R()ret Q()Q() retret ret
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Example: Lifetime (3)

private static Integer foo(int i) {

Integer n = new Integer(i);

return n;

}

• The lifetimes of i and n coincides with the
invocation of foo.

• The lifetime of the integer object created by
new starts when new is executed and ends
when there are no more references to it.

• The integer object thus survives the
invocation of foo.
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Storage Allocation (1)

• Global variables exist throughout the
program’s run-time.
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Storage Allocation (1)

• Global variables exist throughout the
program’s run-time.

• Where to store such variables can thus be
decided statically, at compile (or link) time,
once and for all.
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Storage Allocation (1)

• Global variables exist throughout the
program’s run-time.

• Where to store such variables can thus be
decided statically, at compile (or link) time,
once and for all.

Example:

private static String [] tokenTable

= ...
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Storage Allocation (2)

• Arguments and local variables exist only
during a function (or procedure or method)
invocation:
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Storage Allocation (2)

• Arguments and local variables exist only
during a function (or procedure or method)
invocation:

- Function calls are properly nested.
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Storage Allocation (2)

• Arguments and local variables exist only
during a function (or procedure or method)
invocation:

- Function calls are properly nested.

- In case of recursion, a function may be
re-entered any number of times.
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Storage Allocation (2)

• Arguments and local variables exist only
during a function (or procedure or method)
invocation:

- Function calls are properly nested.

- In case of recursion, a function may be
re-entered any number of times.

- Each function activation needs a private
set of arguments and local variables.
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Storage Allocation (2)

• Arguments and local variables exist only
during a function (or procedure or method)
invocation:

- Function calls are properly nested.

- In case of recursion, a function may be
re-entered any number of times.

- Each function activation needs a private
set of arguments and local variables.

• These observations suggest that storage for
arguments and local variables should be
allocated on a stack.
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Storage Allocation (3)

• When the lifetime does not coincide with
procedure/function invocations, heap
allocation is needed. E.g. for:

- objects in object-oriented languages

- function closures in languages supporting
functions as first class entities

- storage allocated by procedures like
malloc in C.
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Storage Allocation (3)

• When the lifetime does not coincide with
procedure/function invocations, heap
allocation is needed. E.g. for:

- objects in object-oriented languages

- function closures in languages supporting
functions as first class entities

- storage allocated by procedures like
malloc in C.

• Such storage either explicitly deallocated
when no longer needed, or automatically
reclaimed by a garbage collector.
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Stack Frames

One stack frame or activation record for each
currently active function/procedure/method.
Contents:
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Stack Frames

One stack frame or activation record for each
currently active function/procedure/method.
Contents:

• Arguments
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Stack Frames

One stack frame or activation record for each
currently active function/procedure/method.
Contents:

• Arguments

• Bookkeeping information; e.g.

- Return address

- Dynamic link

- Static link
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Stack Frames

One stack frame or activation record for each
currently active function/procedure/method.
Contents:

• Arguments

• Bookkeeping information; e.g.

- Return address

- Dynamic link

- Static link

• Local variables
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Stack Frames

One stack frame or activation record for each
currently active function/procedure/method.
Contents:

• Arguments

• Bookkeeping information; e.g.

- Return address

- Dynamic link

- Static link

• Local variables

• Temporary workspace
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Defining the Stack

The stack is usually defined by a handful of
registers, dictated by the CPU architecture
and/or convention. For example:

• SB: Stack Base

• ST : Stack Top

• LB: Local Base

The names vary. Stack Pointer (SP) and Frame
Pointer (FP) are often used instead of ST and
LB, respectively.
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Typical Stack Frame Layout

address contents
LB - argOffset arguments
. . . . . .
LB static link
LB + 1 dynamic link
LB + 2 return address
LB + 3 local variables
. . . . . .
LB + tempOffset temporary storage

where

argOffset = size(arguments)

tempOffset = 3 + size(local variables)

TAM uses this convention. (Word (e.g. 4 bytes)
addressing assumed, offsets in words.)
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Example: A function f

(Not quite current MiniTriangle, but language
could easily be extended in this way.)

var n: Integer;

...

fun f(x,y: Integer): Integer =

let

z: Integer

in begin

z := x * x + y * y;

return n * z

end
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Example: Calling f

Call sequence for f(3,7) * 8:

2015 LOADL 3 ; 1st arg. (x)

2016 LOADL 7 ; 2nd arg. (y)

2017 CALL f

2018 LOADL 8

2019 MUL

Address of each instruction explicitly indicated to
the left. Address of f here given symbolically by
a label. Corresponds to the address where the
code for f starts, say 2082.
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Example: Stack layout on entry to f

On entry to f; caller’s ST = f’s LB:

address contents

. . . . . .

SB + 42 n: n

. . . . . .

LB - 2 x: 3

LB - 1 y: 7

LB static link

LB + 1 dynamic link

LB + 2 return address = 2018

Ret. addr. = old program counter (PC) = addr. of
instruction immediately after the call instruction.
New PC = address of first instruction of f = 2082.
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Example: TAM Code for f

TAM-code for the function f (at address 2082):

LOADL 0

LOAD [LB - 2]; x

LOAD [LB - 2]; x

MUL

LOAD [LB - 1]; y

LOAD [LB - 1]; y

MUL

ADD

STORE [LB + 3] ; z

LOAD [SB + 42]; n

LOAD [LB + 3] ; z

MUL

POP 1 1

RETURN 1 2

RETURN replaces activation record (frame) of f by
result, restores LB, and jumps to ret. addr. (2018).

Note: all variable offsets are static.
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Dynamic and Static Links

• Dynamic Link: Value to which LB (Local Base)
is restored by RETURN when exiting procedure;
i.e. addr. of caller’s frame = old LB:
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Dynamic and Static Links

• Dynamic Link: Value to which LB (Local Base)
is restored by RETURN when exiting procedure;
i.e. addr. of caller’s frame = old LB:

- “Dynamic” because related to dynamic call
graph.
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Dynamic and Static Links

• Dynamic Link: Value to which LB (Local Base)
is restored by RETURN when exiting procedure;
i.e. addr. of caller’s frame = old LB:

- “Dynamic” because related to dynamic call
graph.

• Static Link: Base of underlying frame of function
that immediately lexically encloses this one.
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Dynamic and Static Links

• Dynamic Link: Value to which LB (Local Base)
is restored by RETURN when exiting procedure;
i.e. addr. of caller’s frame = old LB:

- “Dynamic” because related to dynamic call
graph.

• Static Link: Base of underlying frame of function
that immediately lexically encloses this one.

- “Static” because related to program’s static
structure.
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Dynamic and Static Links

• Dynamic Link: Value to which LB (Local Base)
is restored by RETURN when exiting procedure;
i.e. addr. of caller’s frame = old LB:

- “Dynamic” because related to dynamic call
graph.

• Static Link: Base of underlying frame of function
that immediately lexically encloses this one.

- “Static” because related to program’s static
structure.

- Used to determine addresses of variables
of lexically enclosing functions.
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Example: Stack Allocation (1)

let

var a: Integer[3];

var b: Boolean;

var c: Character;

proc Y ()

let

var d: Integer;

var e: record c: Character, n: Integer end

in

...;

proc Z ()

let

var f: Integer

in

begin ...; Y(); ... end

in

begin ...; Y(); ...; Z(); ... end
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Example: Stack Allocation (2)

Initially LB = SB; i.e., the global variables constitute
the frame of the main program.

Call sequence: main →Y (i.e. after main calling Y):

Global variables SB −→ a[0]
a[1]
a[2]
b
c

Frame of Y LB −→ static link
dynamic link
return address
d
e.c
e.n

ST −→
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Example: Stack Allocation (3)

Call sequence: main →Z →Y:

Global variables SB −→ a[0]
a[1]
a[2]
b
c

Frame of Z static link
dynamic link
return address
f

Frame of Y LB −→ static link
dynamic link
return address
d
e.c
e.n

ST −→
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Exercise: Stack Allocation

Global variables SB −→ a[0]
a[1]
a[2]
b
c

Frame of Z static link
dynamic link
return address
f

Frame of Y LB −→ static link
dynamic link
return address
d
e.c
e.n

ST −→

In Y, what is the address of: b? e.c? f?
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Non-Local Variable Access (1)

Consider nested procedures:
proc P()

var x, y, z: Integer
proc Q()

...
begin ... if ... Q() ... end

proc R()
...
begin ... Q() ... end

begin ... Q() ... R() ... end
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Non-Local Variable Access (1)

Consider nested procedures:
proc P()

var x, y, z: Integer
proc Q()

...
begin ... if ... Q() ... end

proc R()
...
begin ... Q() ... end

begin ... Q() ... R() ... end

P’s variables are in scope also in Q and R.
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Non-Local Variable Access (1)

Consider nested procedures:
proc P()

var x, y, z: Integer
proc Q()

...
begin ... if ... Q() ... end

proc R()
...
begin ... Q() ... end

begin ... Q() ... R() ... end

P’s variables are in scope also in Q and R.
But how to access them from Q or R?
Neither global, nor local!

Belong to the lexically enclosing procedure.
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Non-Local Variable Access (2)

In particular:
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Non-Local Variable Access (2)

In particular:

• We cannot access x, y, z relative to the stack
base (SB) since we cannot (in general)
statically know if P was called directly from
the main program or indirectly via one or
more other procedures.
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Non-Local Variable Access (2)

In particular:

• We cannot access x, y, z relative to the stack
base (SB) since we cannot (in general)
statically know if P was called directly from
the main program or indirectly via one or
more other procedures.

• I.e., there could be arbitrarily many stack
frames below P’s frame.

G53CMP: Lecture 14 – p.23/37



Non-Local Variable Access (3)

• We cannot access x, y, z relative to the local
base (LB) since we cannot (in general)
statically know if e.g. Q was called directly
from P, or indirectly via R and/or recursively
via itself.
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Non-Local Variable Access (3)

• We cannot access x, y, z relative to the local
base (LB) since we cannot (in general)
statically know if e.g. Q was called directly
from P, or indirectly via R and/or recursively
via itself.

• I.e., there could be arbitrarily many stack
frames between Q’s and P’s frames.
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Non-Local Variable Access (4)

Answer:

• The Static Links in Q’s and R’s frames are set
to point to P’s frame on each activation.
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Non-Local Variable Access (4)

Answer:

• The Static Links in Q’s and R’s frames are set
to point to P’s frame on each activation.

• The static link in P’s frame is set to point to
the frame of its closest lexically enclosing
procedure, and so on.
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Non-Local Variable Access (4)

Answer:

• The Static Links in Q’s and R’s frames are set
to point to P’s frame on each activation.

• The static link in P’s frame is set to point to
the frame of its closest lexically enclosing
procedure, and so on.

• Thus, by following the chain of static links,
one can access variables at any level of a
nested scope.
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Non-Local Variable Access (5)

Call sequence: main →. . .→P →Q:

Global variables SB −→ . . .
other frames . . .
Frame of P static link

dynamic link
return address
x
y
z

Frame of Q LB −→ static link
dynamic link
return address
. . .

ST −→
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Non-Local Variable Access (6)

Call sequence: main →. . .→P →R →Q →Q:
Global variables SB −→ . . .
other frames . . .
Frame of P static link

dynamic link
return address
x

y

z

Frame of R static link
dynamic link
return address
. . .

Frame of Q (1) static link
dynamic link
return address
. . .

Frame of Q (2) LB −→ static link
dynamic link
return address
. . .

ST −→
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Non-Local Variable Access (7)

Consider further levels of nesting:
proc P()

var x, y, z: Integer
proc Q()

proc R()
...
begin ...if ... R() ... end

...
begin ... R() ... end

begin ... Q() ... end
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Non-Local Variable Access (7)

Consider further levels of nesting:
proc P()

var x, y, z: Integer
proc Q()

proc R()
...
begin ...if ... R() ... end

...
begin ... R() ... end

begin ... Q() ... end

Note: Q’s variables now in scope in R.
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Non-Local Variable Access (7)

Consider further levels of nesting:
proc P()

var x, y, z: Integer
proc Q()

proc R()
...
begin ...if ... R() ... end

...
begin ... R() ... end

begin ... Q() ... end

Note: Q’s variables now in scope in R.
To access, compute the difference between scope
levels of the accessing procedure/function and the
accessed variable (note: static information),
and follow that many static links.
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Non-Local Variable Access (8)

Call sequence: main →. . .→P →Q →R →R:
Global variables SB −→ . . .
other frames . . .
Frame of P static link

dynamic link
return address
x

y

z

Frame of Q static link
dynamic link
return address
. . .

Frame of R (1) static link
dynamic link
return address
. . .

Frame of R (2) LB −→ static link
dynamic link
return address
. . .

ST −→
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Example: Call with Static Link

TAM code, P calling Q: Q’s static link = P’s local
base, pushed onto stack prior to call:

LOADA [LB + 0] ; Q’s static link

LOADCA #1_Q ; Address of Q

CALLI

TAM code, R calling iteself recursively: copy of R’s
static link (as callee’s and caller’s scope levels
are the same) pushed onto stack prior to call:

LOAD [LB + 0] ; R’s static link

LOADCA #2_R ; Address of R

CALLI
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Example: Non-local Access

Accessing y in P from within R; scope level
difference is 2:

LOAD [LB + 0] ; R’s static link

LOADI 0 ; Q’s static link

LOADI 4 ; y at offset 4 in P’s frame
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Code Generation (1)

evaluate majl env (ExpVar {evVar = itms}) =

case lookupISV itms env of

ISVDisp d ->

address majl vl d

ISVLbl l -> do

staticLink majl vl

emit (LOADCA l)

where

vl = majScopeLvl (itmsLvl itms)

Note: A label represents a procedure or function;
what is pushed onto stack is effectively the corre-
sponding closure (see later slide).
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Code Generation (2)

address :: Int -> Int -> MTInt -> TAMCG ()

address cl vl d

| vl == topMajScopeLvl =

emit (LOADA (SB d))

| cl == vl =

emit (LOADA (LB d))

| cl > vl = do

emit (LOAD (LB sld))

emitN (cl - vl - 1) (LOADI sld)

emit (LOADL d)

emit ADD

| otherwise = error "Bug: Not in scope!"

Variable Scope Level

Current Scope Level
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Code Generation (3)

staticLink :: Int -> Int -> TAMCG ()

staticLink crl cel

| cel == topMajScopeLvl =

emit (LOADL 0)

| crl == cel =

emit (LOADA (LB 0))

| crl > cel = do

emit (LOAD (LB sld))

emitN (crl - cel - 1) (LOADI sld)

| otherwise =

error "Bug: Not in scope!"

Callee Scope Level

Caller Scope Level
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Closures (1)

A closure:

• Code for function or procedure; and

• Bindings for all its free variables.
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Closures (1)

A closure:

• Code for function or procedure; and

• Bindings for all its free variables.

Under the present scheme:

• Code: Address of function or procedure;

• Bindings: Chain of stack-allocated activation
records linked by the static links.
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Closures (1)

A closure:

• Code for function or procedure; and

• Bindings for all its free variables.

Under the present scheme:

• Code: Address of function or procedure;

• Bindings: Chain of stack-allocated activation
records linked by the static links.

Works only when closure does not survive the acti-
vation of the function/procedure where it was created.
Cannot support first-class functions/procedures!
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Closures (2)

• Functions/procedures are first class if they
can be handled just like any other values; e.g.

- bound to variables

- passed as arguments

- returned as results.
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Closures (2)

• Functions/procedures are first class if they
can be handled just like any other values; e.g.

- bound to variables

- passed as arguments

- returned as results.

• Supporting first-class functions/procedures
requires closures to be heap-allocated:

- Code still just address of function or
procedure.

- Static link replaced by (pointer(s) to)
heap-allocated activation record(s).

G53CMP: Lecture 14 – p.36/37



Closures (3)

• As an optimisation, one could imagine
combined schemes: stack allocation and
static links might be used when known that a
closure will never survive activation of
enclosing function/procedure.
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