
G53CMP: Lecture 15
Run-Time Organization II

Henrik Nilsson

University of Nottingham, UK

G53CMP: Lecture 15 – p.1/37



This Lecture

Data Representation: how to store various
kinds of data.

• General issues

• Primitive types

• Record types

• Arrays

• Disjoint unions

• Recursive types

G53CMP: Lecture 15 – p.2/37



Data Representation?

• Objective: to store various kinds of data.
Integers, characters, strings, arrays, trees, . . .

G53CMP: Lecture 15 – p.3/37



Data Representation?

• Objective: to store various kinds of data.
Integers, characters, strings, arrays, trees, . . .

• At our disposal: the memory:

address contents

. . . . . .

10200008 3E124C21

1020000C FE7B3811

10200010 7A7CBBA3

. . . . . .

G53CMP: Lecture 15 – p.3/37



Data Representation?

• Objective: to store various kinds of data.
Integers, characters, strings, arrays, trees, . . .

• At our disposal: the memory:

address contents

. . . . . .

10200008 3E124C21

1020000C FE7B3811

10200010 7A7CBBA3

. . . . . .

• We need to encode the data to be stored.
G53CMP: Lecture 15 – p.3/37



Data Representation: Issues (1)

• Nonconfusion: Different values of a given
type must have different representations.

• Uniqueness: Each value should have exactly
one representation.

G53CMP: Lecture 15 – p.4/37



Data Representation: Issues (1)

• Nonconfusion: Different values of a given
type must have different representations.

• Uniqueness: Each value should have exactly
one representation.

[Note: The discussion concerns run-time repre-
sentation. Any value that is known statically
potentially need no run-time representation at
all.]

G53CMP: Lecture 15 – p.4/37



Nonconfusion (1)

Self-evident: if two different values are represented
the same way, they cannot be told apart.

G53CMP: Lecture 15 – p.5/37



Nonconfusion (1)

Self-evident: if two different values are represented
the same way, they cannot be told apart.

• Dynamically checked language: Every
possible value must have a distinct
representation.

G53CMP: Lecture 15 – p.5/37



Nonconfusion (1)

Self-evident: if two different values are represented
the same way, they cannot be told apart.

• Dynamically checked language: Every
possible value must have a distinct
representation.

• (Statically) typed language: Values of the
same type must have distinct representations;
the same representation may be reused for
values of different types.

G53CMP: Lecture 15 – p.5/37



Nonconfusion (2)

Example: suppose both characters and small
integers represented by 8-bit bytes:

• repr(’A’) = 01000001

• repr(65) = 01000001

G53CMP: Lecture 15 – p.6/37



Nonconfusion (2)

Example: suppose both characters and small
integers represented by 8-bit bytes:

• repr(’A’) = 01000001

• repr(65) = 01000001

Suppose a variable x contains this value 01000001:
Should print(x) print ’A’ or 65?

G53CMP: Lecture 15 – p.6/37



Nonconfusion (2)

Example: suppose both characters and small
integers represented by 8-bit bytes:

• repr(’A’) = 01000001

• repr(65) = 01000001

Suppose a variable x contains this value 01000001:
Should print(x) print ’A’ or 65?

• No way to tell the representation of ’A’ and
65 apart in a dynamically checked setting.

• In a statically typed setting, the type is used
to disambiguate.

G53CMP: Lecture 15 – p.6/37



Nonconfusion (3)

Example: Consider two enumeration types:

data Colour = Red | Green

data Size = Small | Large

G53CMP: Lecture 15 – p.7/37



Nonconfusion (3)

Example: Consider two enumeration types:

data Colour = Red | Green

data Size = Small | Large

It must always be the case that

repr(Red) 6= repr(Green)

repr(Small) 6= repr(Large)

G53CMP: Lecture 15 – p.7/37



Nonconfusion (3)

Example: Consider two enumeration types:

data Colour = Red | Green

data Size = Small | Large

It must always be the case that

repr(Red) 6= repr(Green)

repr(Small) 6= repr(Large)

Further, in a dynamically checked setting:

{repr(Red), repr(Green)} ∩ {repr(Small), repr(Large)}

= ∅

G53CMP: Lecture 15 – p.7/37



Uniqueness

Comparison of values is facilitated if each value
has exactly one representation.

However, not essential. One exception:

• Floating-point representations typically have a
separate sign bit. Thus, the representation of
+0 is distinct from the representation of −0.

G53CMP: Lecture 15 – p.8/37



Data Representation: Issues (2)

• Constant-size representation: The
representations of all values of a given type
occupy the same amount of space.

• Direct or indirect (via pointer)
representation.

Constant-size representation enables compiler to
statically plan storage allocation (since type and
hence size is known statically).

If not possible/too wasteful: use some form of
indirect representation.

G53CMP: Lecture 15 – p.9/37



Direct or Indirect Representation (1)

• Direct representation: the representation of
a value x is the binary representation of x:

repr. x

G53CMP: Lecture 15 – p.10/37



Direct or Indirect Representation (1)

• Direct representation: the representation of
a value x is the binary representation of x:

repr. x

• Indirect representation: x represented by a
handle that points to a binary representation
of x (on the stack or in the heap):

repr. x

G53CMP: Lecture 15 – p.10/37



Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

G53CMP: Lecture 15 – p.11/37



Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

- no heap allocation/deallocation overhead

G53CMP: Lecture 15 – p.11/37



Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

- no heap allocation/deallocation overhead

• Pros indirect representation:

G53CMP: Lecture 15 – p.11/37



Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

- no heap allocation/deallocation overhead

• Pros indirect representation:

- supports varying size data
(like dynamic arrays)

G53CMP: Lecture 15 – p.11/37



Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

- no heap allocation/deallocation overhead

• Pros indirect representation:

- supports varying size data
(like dynamic arrays)

- supports recursive types
(like linked lists, trees)

G53CMP: Lecture 15 – p.11/37



Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

- no heap allocation/deallocation overhead

• Pros indirect representation:

- supports varying size data
(like dynamic arrays)

- supports recursive types
(like linked lists, trees)

- facilitates implementation of parametric
polymorphism (as handles can be uniform)

G53CMP: Lecture 15 – p.11/37



Representing Primitive Types (1)

Primitive types are often supported directly by
the underlying hardware. For example, a 32-bit
machine might support:

• addressing of 8-bit bytes and 32-bit words

• 32-bit twos-complement integer arithmetic

• 64-bit floating point operations

G53CMP: Lecture 15 – p.12/37



Representing Primitive Types (1)

Primitive types are often supported directly by
the underlying hardware. For example, a 32-bit
machine might support:

• addressing of 8-bit bytes and 32-bit words

• 32-bit twos-complement integer arithmetic

• 64-bit floating point operations

There are also standard encoding conventions,
such as the 7-bit ASCII or 8-bit ISO character
codes, or the Unicode standard. Adopting such
conventions facilitates interoperability and
communication.

G53CMP: Lecture 15 – p.12/37



Representing Primitive Types (2)

On such a 32-bit machine, the following is a
possible representation choice:

Type Representation Size

Boolean 0 for false; 1 for true 8-bit byte

Char ISO Latin 1 encoding 8-bit byte

Integer twos-complement repr. 32-bit word

Real floating point repr. 64-bit word

G53CMP: Lecture 15 – p.13/37



Representing Records (1)

A record consists of several fields, each of which
has an identifier. For example:

type Date = record

y: Integer,

m: Integer,

d: Integer

end;

type Details = record

female: Boolean,

dob: Date,

status: Char

end;
G53CMP: Lecture 15 – p.14/37



Representing Records (2)

Representation of records:

• Sequence of representations of individual
fields.

G53CMP: Lecture 15 – p.15/37



Representing Records (2)

Representation of records:

• Sequence of representations of individual
fields.

• Caveat: alignment restrictions. The
underlying architecture might require that e.g.
word-sized quantities start at a word
boundary.

G53CMP: Lecture 15 – p.15/37



Representing Records (2)

Representation of records:

• Sequence of representations of individual
fields.

• Caveat: alignment restrictions. The
underlying architecture might require that e.g.
word-sized quantities start at a word
boundary.

• Relaxing this is possible, but may require
extra work; e.g., accessing a word byte by
byte (four instructions instead of one).

G53CMP: Lecture 15 – p.15/37



Alignment

• An address a is n-byte aligned iff
a ≡ 0 (mod n).

G53CMP: Lecture 15 – p.16/37



Alignment

• An address a is n-byte aligned iff
a ≡ 0 (mod n).

• A variable/field etc. is n-byte aligned iff it is
stored starting at an n-byte aligned address.

G53CMP: Lecture 15 – p.16/37



Alignment

• An address a is n-byte aligned iff
a ≡ 0 (mod n).

• A variable/field etc. is n-byte aligned iff it is
stored starting at an n-byte aligned address.

• To satisfy alignment requirements of its
components, a variable of aggregate type
like a record is commonly aligned according
to the maximum alignment of its components.

G53CMP: Lecture 15 – p.16/37



Alignment

• An address a is n-byte aligned iff
a ≡ 0 (mod n).

• A variable/field etc. is n-byte aligned iff it is
stored starting at an n-byte aligned address.

• To satisfy alignment requirements of its
components, a variable of aggregate type
like a record is commonly aligned according
to the maximum alignment of its components.

• Padding may be needed between variables/
components to ensure the alignment
requirements of each is met.

G53CMP: Lecture 15 – p.16/37



Exercise: Representing Records (1)

Assume:

• 1 word = 4 byte = 32 bit Integers

• 1 byte = 8 bit Boolean and Char

• Integer must be word aligned

What is the alignment and size of the type Date?

type Date = record

y: Integer,

m: Integer,

d: Integer

end;

G53CMP: Lecture 15 – p.17/37



Exercise: Representing Records (2)

What is the alignment and size of the type
Details?

type Details = record

female: Boolean,

dob: Date,

status: Char

end;

Given a variable x : Details, what are the
addresses of x.female, x.dob.y, x.dob.m,
x.dob.d, x.status relative to addr(x)?

G53CMP: Lecture 15 – p.18/37



Exercise: Representing Records (3)

Size of Date is 3 32-bit words, size of Details
is 1 + 3 + 1 = 5 32-bit words:

variable address contents

x.female addr(x) 1 (true)

x.dob.y addr(x) + 4 1984

x.dob.m addr(x) + 8 7

x.dob.d addr(x) + 12 25

x.status addr(x) + 16 117 (’u’)

G53CMP: Lecture 15 – p.19/37



Example: Records in MiniTriangle

Consider the following MiniTriangle program and
the resulting (unoptimized) TAM code:

let var r :

{a : Integer,

b : Boolean,

c : Integer}

in

r.b := true

LOADLB 0 3

LOADL 1

LOADA [SB + 0]

LOADL 1

ADD

STOREIB 1

POP 0 3

HALT

G53CMP: Lecture 15 – p.20/37



Record Field Order

The order of the fields in the representation of a
record need not be the same as at the source level:

G53CMP: Lecture 15 – p.21/37



Record Field Order

The order of the fields in the representation of a
record need not be the same as at the source level:

• Fields could be reordered to attempt to reduce
waste of space due to alignment restrictions.

G53CMP: Lecture 15 – p.21/37



Record Field Order

The order of the fields in the representation of a
record need not be the same as at the source level:

• Fields could be reordered to attempt to reduce
waste of space due to alignment restrictions.

• The language design might stipulate that a
record is a set of named fields; i.e., their
order is irrelevant.

G53CMP: Lecture 15 – p.21/37



Record Field Order

The order of the fields in the representation of a
record need not be the same as at the source level:

• Fields could be reordered to attempt to reduce
waste of space due to alignment restrictions.

• The language design might stipulate that a
record is a set of named fields; i.e., their
order is irrelevant.

MiniTriangle adopts the set view (and HMTC
orders fields alphabetically in a record
representation).

G53CMP: Lecture 15 – p.21/37



Representing Arrays (1)

• Array represented by sequence of
representations of individual array elements.

G53CMP: Lecture 15 – p.22/37



Representing Arrays (1)

• Array represented by sequence of
representations of individual array elements.

• Two cases:

- Static Array: Number of elements known
at compile time.

- Dynamic Array: Number of elements
determined at run time.

G53CMP: Lecture 15 – p.22/37



Representing Arrays (1)

• Array represented by sequence of
representations of individual array elements.

• Two cases:

- Static Array: Number of elements known
at compile time.

- Dynamic Array: Number of elements
determined at run time.

• When accessing array elements, must ensure
indices are within bounds.

G53CMP: Lecture 15 – p.22/37



Representing Arrays (1)

• Array represented by sequence of
representations of individual array elements.

• Two cases:

- Static Array: Number of elements known
at compile time.

- Dynamic Array: Number of elements
determined at run time.

• When accessing array elements, must ensure
indices are within bounds.

• Address of element computed from base
address of array, index, and size of elements.

G53CMP: Lecture 15 – p.22/37



Representing Arrays (2)

Static array: required storage space and array
bounds known at compile time. Consider:

var x : T[n]

• Required storage: n× sizeof(T )

• Access of x[i]:

- Verify that 0 ≤ i ≤ (n− 1)

- Compute address a of desired element:

a = addr(x[0]) + i× sizeof(T )

- Fetch/store value at address a.
G53CMP: Lecture 15 – p.23/37



Representing Arrays (3)

Example: TAM code for a[3] := 7 given
var a: Integer[10] (at [SB + 0])

LOADL 7

LOADA [SB + 0]

LOADL 3

LOAD [ST - 1]

LOADL 0

LSS

JUMPIFNZ #0

LOAD [ST - 1]

LOADL 10

LSS

JUMPIFNZ #1

#0: CALL ixerror

#1: LOADL 1

MUL

ADD

STOREI 0

G53CMP: Lecture 15 – p.24/37



Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.

G53CMP: Lecture 15 – p.25/37



Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.

- indirect representation: array accessed
via a handle

G53CMP: Lecture 15 – p.25/37



Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.

- indirect representation: array accessed
via a handle

- handle itself has fixed size

G53CMP: Lecture 15 – p.25/37



Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.

- indirect representation: array accessed
via a handle

- handle itself has fixed size

- handle contains pointer to array proper
and the array bounds

G53CMP: Lecture 15 – p.25/37



Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.

- indirect representation: array accessed
via a handle

- handle itself has fixed size

- handle contains pointer to array proper
and the array bounds

- storage for array proper allocated at runtime

G53CMP: Lecture 15 – p.25/37



Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.

- indirect representation: array accessed
via a handle

- handle itself has fixed size

- handle contains pointer to array proper
and the array bounds

- storage for array proper allocated at runtime

- index checked by comparing with array
bounds stored in the handle.

G53CMP: Lecture 15 – p.25/37



Representing Disjoint Unions (1)

• A disjoint union consists of a tag and a
variant part.

G53CMP: Lecture 15 – p.26/37



Representing Disjoint Unions (1)

• A disjoint union consists of a tag and a
variant part.

• The value of the tag determines the type of
the variant part.

G53CMP: Lecture 15 – p.26/37



Representing Disjoint Unions (1)

• A disjoint union consists of a tag and a
variant part.

• The value of the tag determines the type of
the variant part.

• Mathematically: T = T1 + . . .+ Tn; given tag i,
the variant part is a value chosen from type Ti.

G53CMP: Lecture 15 – p.26/37



Representing Disjoint Unions (1)

• A disjoint union consists of a tag and a
variant part.

• The value of the tag determines the type of
the variant part.

• Mathematically: T = T1 + . . .+ Tn; given tag i,
the variant part is a value chosen from type Ti.

• Disjoint unions occur as

- variant records in Pascal and Ada

- algebraic data types in Haskell and ML

- object types in OO languages like Java, C#

G53CMP: Lecture 15 – p.26/37



Representing Disjoint Unions (2)

• A disjoint union can be represented like a
record.

G53CMP: Lecture 15 – p.27/37



Representing Disjoint Unions (2)

• A disjoint union can be represented like a
record.

• The value of the tag field determines the
layout of the rest of the record.

G53CMP: Lecture 15 – p.27/37



Representing Disjoint Unions (2)

• A disjoint union can be represented like a
record.

• The value of the tag field determines the
layout of the rest of the record.

• If constant size is necessary, size is the
maximal size over the various possible
layouts.

G53CMP: Lecture 15 – p.27/37



Representing Disjoint Unions (3)

Some Haskell Examples:

• data OptInt = NoInt | JustInt Int

G53CMP: Lecture 15 – p.28/37



Representing Disjoint Unions (3)

Some Haskell Examples:

• data OptInt = NoInt | JustInt Int

- The first tag is NoInt; no variant part.
(Which is the same as saying that we have
a trivial variant part of the unit type ().)

G53CMP: Lecture 15 – p.28/37



Representing Disjoint Unions (3)

Some Haskell Examples:

• data OptInt = NoInt | JustInt Int

- The first tag is NoInt; no variant part.
(Which is the same as saying that we have
a trivial variant part of the unit type ().)

- The second tag is JustInt; the variant
part is a single integer field.

G53CMP: Lecture 15 – p.28/37



Representing Disjoint Unions (4)

• data Shape

= Triangle Point Point Point

| Rectangle Point Point

| Circle Point Radius

G53CMP: Lecture 15 – p.29/37



Representing Disjoint Unions (4)

• data Shape

= Triangle Point Point Point

| Rectangle Point Point

| Circle Point Radius

- three tags; the variant parts are:
• Point triple
• Point pair
• Point and Radius pair.

G53CMP: Lecture 15 – p.29/37



Representing Disjoint Unions (4)

• data Shape

= Triangle Point Point Point

| Rectangle Point Point

| Circle Point Radius

- three tags; the variant parts are:
• Point triple
• Point pair
• Point and Radius pair.

• data Colors = Red | Green | Blue

G53CMP: Lecture 15 – p.29/37



Representing Disjoint Unions (4)

• data Shape

= Triangle Point Point Point

| Rectangle Point Point

| Circle Point Radius

- three tags; the variant parts are:
• Point triple
• Point pair
• Point and Radius pair.

• data Colors = Red | Green | Blue

- three tags; no variant parts.

G53CMP: Lecture 15 – p.29/37



Representing Disjoint Unions (4)

• data Shape

= Triangle Point Point Point

| Rectangle Point Point

| Circle Point Radius

- three tags; the variant parts are:
• Point triple
• Point pair
• Point and Radius pair.

• data Colors = Red | Green | Blue

- three tags; no variant parts.

- this is thus just an enumeration type.
G53CMP: Lecture 15 – p.29/37



Representing Recursive Types

• A recursive type is one defined in terms of
itself.

G53CMP: Lecture 15 – p.30/37



Representing Recursive Types

• A recursive type is one defined in terms of
itself.

• Examples are linked lists and trees.

G53CMP: Lecture 15 – p.30/37



Representing Recursive Types

• A recursive type is one defined in terms of
itself.

• Examples are linked lists and trees.

• Recursive types are usually represented
indirectly since this allows values of arbitrary
size to be referenced through a fixed size
handle.

G53CMP: Lecture 15 – p.30/37



Uniform Representation (1)

Languages like Haskell and ML adopts a uniform
data representation: all values (even “primitive”
ones) have an indirect representation (pointer):

G53CMP: Lecture 15 – p.31/37



Uniform Representation (1)

Languages like Haskell and ML adopts a uniform
data representation: all values (even “primitive”
ones) have an indirect representation (pointer):

• Uniform representation facilitates parametric
polymorphism.

G53CMP: Lecture 15 – p.31/37



Uniform Representation (1)

Languages like Haskell and ML adopts a uniform
data representation: all values (even “primitive”
ones) have an indirect representation (pointer):

• Uniform representation facilitates parametric
polymorphism. E.g., the identity function

id x = x

can be compiled to a single piece of code
working for values of any type because all
values are represented same way.

G53CMP: Lecture 15 – p.31/37



Uniform Representation (1)

Languages like Haskell and ML adopts a uniform
data representation: all values (even “primitive”
ones) have an indirect representation (pointer):

• Uniform representation facilitates parametric
polymorphism. E.g., the identity function

id x = x

can be compiled to a single piece of code
working for values of any type because all
values are represented same way.

• Recursive types supported automatically:
“everything is already a pointer”.

G53CMP: Lecture 15 – p.31/37



Uniform Representation (2)

• Many OO languages, like Java and C#, adopt
a mostly uniform representation:

- All objects are represented by pointers.

- Recursive types thus supported.

- OO-style polymorphism: an object of a class
is also an object of any of the superclasses.

- Uniform layout of “common part” of object
to allow superclass methods to work on
subclass objects.

G53CMP: Lecture 15 – p.32/37



Example: Haskell Tree Type (1)

This example illustrates

• disjoint union representation

• recursive type representation

• uniform representation (through pointers) of
values of all types.

G53CMP: Lecture 15 – p.33/37



Example: Haskell Tree Type (2)

data Tree = Leaf Int

| Node Tree Tree

aTree = Node (Leaf 1)

(Node (Leaf 2) (Leaf 3))

Node

Leaf 1 Node

Leaf 2 Leaf 3

G53CMP: Lecture 15 – p.34/37



Example: Haskell Tree Type (3)

Node

Leaf

INT 1

Node

Leaf

INT 2

Leaf

INT 3

G53CMP: Lecture 15 – p.35/37



Example: Haskell Tree Type (4)

address contents

. . . . . .

10200008 INT

1020000C 1

10200010 INT

10200014 2

. . . . . .

2E4D0100 Leaf

2E4D0104 10200010

2E4D0108 Leaf

2E4D010C 10200018

. . . . . .

address contents

. . . . . .

2E4D0200 Node

2E4D0204 2E4D0100

2E4D0208 2E4D0108

2E4D020C Leaf

2E4D0210 10200008

2E4D0214 Node

2E4D0218 2E4D020C

2E4D021C 2E4D0200

. . . . . .

G53CMP: Lecture 15 – p.36/37



Example: Haskell Tree Type (5)

Of course, the tags (Leaf, Node, and INT) must
also be represented. Two possibilities:

G53CMP: Lecture 15 – p.37/37



Example: Haskell Tree Type (5)

Of course, the tags (Leaf, Node, and INT) must
also be represented. Two possibilities:

• A small integer, subject to nonconfusion. E.g.

Leaf = 0, Node = 1, INT = 0

(Representing both Leaf and INT with the
small integer 0 does not lead to confusion in a
statically typed language like Haskell.)

G53CMP: Lecture 15 – p.37/37



Example: Haskell Tree Type (5)

Of course, the tags (Leaf, Node, and INT) must
also be represented. Two possibilities:

• A small integer, subject to nonconfusion. E.g.

Leaf = 0, Node = 1, INT = 0

(Representing both Leaf and INT with the
small integer 0 does not lead to confusion in a
statically typed language like Haskell.)

• A pointer to an information table.

G53CMP: Lecture 15 – p.37/37


	This Lecture
	Data Representation?
	Data Representation: Issues (1)
	Nonconfusion (1)
	Nonconfusion (2)
	Nonconfusion (3)
	Uniqueness
	Data Representation: Issues (2)
	Direct or Indirect Representation (1)
	Direct or Indirect Representation (2)
	Representing Primitive Types (1)
	Representing Primitive Types (2)
	Representing Records (1)
	Representing Records (2)
	Alignment
	Exercise: Representing Records (1)
	Exercise: Representing Records (2)
	Exercise: Representing Records (3)
	Example: Records in MiniTriangle
	Record Field Order
	Representing Arrays (1)
	Representing Arrays (2)
	Representing Arrays (3)
	Representing Arrays (4)
	Representing Disjoint Unions (1)
	Representing Disjoint Unions (2)
	Representing Disjoint Unions (3)
	Representing Disjoint Unions (4)
	Representing Recursive Types
	Uniform Representation (1)
	Uniform Representation (2)
	Example: Haskell Tree Type (1)
	Example: Haskell Tree Type (2)
	Example: Haskell Tree Type (3)
	Example: Haskell Tree Type (4)
	Example: Haskell Tree Type (5)

