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This Lecture

Data Representation: how to store various
kinds of data.

• General issues

• Primitive types

• Record types

• Arrays

• Disjoint unions

• Recursive types
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Data Representation?

• Objective: to store various kinds of data.
Integers, characters, strings, arrays, trees, . . .
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Data Representation?

• Objective: to store various kinds of data.
Integers, characters, strings, arrays, trees, . . .

• At our disposal: the memory:

address contents

. . . . . .

10200008 3E124C21

1020000C FE7B3811

10200010 7A7CBBA3

. . . . . .
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Data Representation?

• Objective: to store various kinds of data.
Integers, characters, strings, arrays, trees, . . .

• At our disposal: the memory:

address contents

. . . . . .

10200008 3E124C21

1020000C FE7B3811

10200010 7A7CBBA3

. . . . . .

• We need to encode the data to be stored.
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Data Representation: Issues (1)

• Nonconfusion: Different values of a given
type must have different representations.

• Uniqueness: Each value should have exactly
one representation.
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Data Representation: Issues (1)

• Nonconfusion: Different values of a given
type must have different representations.

• Uniqueness: Each value should have exactly
one representation.

[Note: The discussion concerns run-time repre-
sentation. Any value that is known statically
potentially need no run-time representation at
all.]

G53CMP: Lecture 15 – p.4/37



Nonconfusion (1)

Self-evident: if two different values are represented
the same way, they cannot be told apart.
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Nonconfusion (1)

Self-evident: if two different values are represented
the same way, they cannot be told apart.

• Dynamically checked language: Every
possible value must have a distinct
representation.
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Nonconfusion (1)

Self-evident: if two different values are represented
the same way, they cannot be told apart.

• Dynamically checked language: Every
possible value must have a distinct
representation.

• (Statically) typed language: Values of the
same type must have distinct representations;
the same representation may be reused for
values of different types.
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Nonconfusion (2)

Example: suppose both characters and small
integers represented by 8-bit bytes:

• repr(’A’) = 01000001

• repr(65) = 01000001
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Nonconfusion (2)

Example: suppose both characters and small
integers represented by 8-bit bytes:

• repr(’A’) = 01000001

• repr(65) = 01000001

Suppose a variable x contains this value 01000001:
Should print(x) print ’A’ or 65?
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Nonconfusion (2)

Example: suppose both characters and small
integers represented by 8-bit bytes:

• repr(’A’) = 01000001

• repr(65) = 01000001

Suppose a variable x contains this value 01000001:
Should print(x) print ’A’ or 65?

• No way to tell the representation of ’A’ and
65 apart in a dynamically checked setting.

• In a statically typed setting, the type is used
to disambiguate.
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Nonconfusion (3)

Example: Consider two enumeration types:

data Colour = Red | Green

data Size = Small | Large
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Nonconfusion (3)

Example: Consider two enumeration types:

data Colour = Red | Green

data Size = Small | Large

It must always be the case that

repr(Red) 6= repr(Green)

repr(Small) 6= repr(Large)
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Nonconfusion (3)

Example: Consider two enumeration types:

data Colour = Red | Green

data Size = Small | Large

It must always be the case that

repr(Red) 6= repr(Green)

repr(Small) 6= repr(Large)

Further, in a dynamically checked setting:

{repr(Red), repr(Green)} ∩ {repr(Small), repr(Large)}

= ∅
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Uniqueness

Comparison of values is facilitated if each value
has exactly one representation.

However, not essential. One exception:

• Floating-point representations typically have a
separate sign bit. Thus, the representation of
+0 is distinct from the representation of −0.

G53CMP: Lecture 15 – p.8/37



Data Representation: Issues (2)

• Constant-size representation: The
representations of all values of a given type
occupy the same amount of space.

• Direct or indirect (via pointer)
representation.

Constant-size representation enables compiler to
statically plan storage allocation (since type and
hence size is known statically).

If not possible/too wasteful: use some form of
indirect representation.
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Direct or Indirect Representation (1)

• Direct representation: the representation of
a value x is the binary representation of x:

repr. x
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Direct or Indirect Representation (1)

• Direct representation: the representation of
a value x is the binary representation of x:

repr. x

• Indirect representation: x represented by a
handle that points to a binary representation
of x (on the stack or in the heap):

repr. x
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Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access
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Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

- no heap allocation/deallocation overhead
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Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

- no heap allocation/deallocation overhead

• Pros indirect representation:
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Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

- no heap allocation/deallocation overhead

• Pros indirect representation:

- supports varying size data
(like dynamic arrays)
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Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

- no heap allocation/deallocation overhead

• Pros indirect representation:

- supports varying size data
(like dynamic arrays)

- supports recursive types
(like linked lists, trees)
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Direct or Indirect Representation (2)

• Pros direct representation:

- efficient access

- no heap allocation/deallocation overhead

• Pros indirect representation:

- supports varying size data
(like dynamic arrays)

- supports recursive types
(like linked lists, trees)

- facilitates implementation of parametric
polymorphism (as handles can be uniform)
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Representing Primitive Types (1)

Primitive types are often supported directly by
the underlying hardware. For example, a 32-bit
machine might support:

• addressing of 8-bit bytes and 32-bit words

• 32-bit twos-complement integer arithmetic

• 64-bit floating point operations
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Representing Primitive Types (1)

Primitive types are often supported directly by
the underlying hardware. For example, a 32-bit
machine might support:

• addressing of 8-bit bytes and 32-bit words

• 32-bit twos-complement integer arithmetic

• 64-bit floating point operations

There are also standard encoding conventions,
such as the 7-bit ASCII or 8-bit ISO character
codes, or the Unicode standard. Adopting such
conventions facilitates interoperability and
communication.
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Representing Primitive Types (2)

On such a 32-bit machine, the following is a
possible representation choice:

Type Representation Size

Boolean 0 for false; 1 for true 8-bit byte

Char ISO Latin 1 encoding 8-bit byte

Integer twos-complement repr. 32-bit word

Real floating point repr. 64-bit word
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Representing Records (1)

A record consists of several fields, each of which
has an identifier. For example:

type Date = record

y: Integer,

m: Integer,

d: Integer

end;

type Details = record

female: Boolean,

dob: Date,

status: Char

end;
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Representing Records (2)

Representation of records:

• Sequence of representations of individual
fields.
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Representing Records (2)

Representation of records:

• Sequence of representations of individual
fields.

• Caveat: alignment restrictions. The
underlying architecture might require that e.g.
word-sized quantities start at a word
boundary.
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Representing Records (2)

Representation of records:

• Sequence of representations of individual
fields.

• Caveat: alignment restrictions. The
underlying architecture might require that e.g.
word-sized quantities start at a word
boundary.

• Relaxing this is possible, but may require
extra work; e.g., accessing a word byte by
byte (four instructions instead of one).
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Alignment

• An address a is n-byte aligned iff
a ≡ 0 (mod n).
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Alignment

• An address a is n-byte aligned iff
a ≡ 0 (mod n).

• A variable/field etc. is n-byte aligned iff it is
stored starting at an n-byte aligned address.
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Alignment

• An address a is n-byte aligned iff
a ≡ 0 (mod n).

• A variable/field etc. is n-byte aligned iff it is
stored starting at an n-byte aligned address.

• To satisfy alignment requirements of its
components, a variable of aggregate type
like a record is commonly aligned according
to the maximum alignment of its components.
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Alignment

• An address a is n-byte aligned iff
a ≡ 0 (mod n).

• A variable/field etc. is n-byte aligned iff it is
stored starting at an n-byte aligned address.

• To satisfy alignment requirements of its
components, a variable of aggregate type
like a record is commonly aligned according
to the maximum alignment of its components.

• Padding may be needed between variables/
components to ensure the alignment
requirements of each is met.
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Exercise: Representing Records (1)

Assume:

• 1 word = 4 byte = 32 bit Integers

• 1 byte = 8 bit Boolean and Char

• Integer must be word aligned

What is the alignment and size of the type Date?

type Date = record

y: Integer,

m: Integer,

d: Integer

end;
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Exercise: Representing Records (2)

What is the alignment and size of the type
Details?

type Details = record

female: Boolean,

dob: Date,

status: Char

end;

Given a variable x : Details, what are the
addresses of x.female, x.dob.y, x.dob.m,
x.dob.d, x.status relative to addr(x)?
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Exercise: Representing Records (3)

Size of Date is 3 32-bit words, size of Details
is 1 + 3 + 1 = 5 32-bit words:

variable address contents

x.female addr(x) 1 (true)

x.dob.y addr(x) + 4 1984

x.dob.m addr(x) + 8 7

x.dob.d addr(x) + 12 25

x.status addr(x) + 16 117 (’u’)
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Example: Records in MiniTriangle

Consider the following MiniTriangle program and
the resulting (unoptimized) TAM code:

let var r :

{a : Integer,

b : Boolean,

c : Integer}

in

r.b := true

LOADLB 0 3

LOADL 1

LOADA [SB + 0]

LOADL 1

ADD

STOREIB 1

POP 0 3

HALT
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Record Field Order

The order of the fields in the representation of a
record need not be the same as at the source level:
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Record Field Order

The order of the fields in the representation of a
record need not be the same as at the source level:

• Fields could be reordered to attempt to reduce
waste of space due to alignment restrictions.
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Record Field Order

The order of the fields in the representation of a
record need not be the same as at the source level:

• Fields could be reordered to attempt to reduce
waste of space due to alignment restrictions.

• The language design might stipulate that a
record is a set of named fields; i.e., their
order is irrelevant.
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Record Field Order

The order of the fields in the representation of a
record need not be the same as at the source level:

• Fields could be reordered to attempt to reduce
waste of space due to alignment restrictions.

• The language design might stipulate that a
record is a set of named fields; i.e., their
order is irrelevant.

MiniTriangle adopts the set view (and HMTC
orders fields alphabetically in a record
representation).
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Representing Arrays (1)

• Array represented by sequence of
representations of individual array elements.
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Representing Arrays (1)

• Array represented by sequence of
representations of individual array elements.

• Two cases:

- Static Array: Number of elements known
at compile time.

- Dynamic Array: Number of elements
determined at run time.
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Representing Arrays (1)

• Array represented by sequence of
representations of individual array elements.

• Two cases:

- Static Array: Number of elements known
at compile time.

- Dynamic Array: Number of elements
determined at run time.

• When accessing array elements, must ensure
indices are within bounds.
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Representing Arrays (1)

• Array represented by sequence of
representations of individual array elements.

• Two cases:

- Static Array: Number of elements known
at compile time.

- Dynamic Array: Number of elements
determined at run time.

• When accessing array elements, must ensure
indices are within bounds.

• Address of element computed from base
address of array, index, and size of elements.
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Representing Arrays (2)

Static array: required storage space and array
bounds known at compile time. Consider:

var x : T[n]

• Required storage: n× sizeof(T )

• Access of x[i]:

- Verify that 0 ≤ i ≤ (n− 1)

- Compute address a of desired element:

a = addr(x[0]) + i× sizeof(T )

- Fetch/store value at address a.
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Representing Arrays (3)

Example: TAM code for a[3] := 7 given
var a: Integer[10] (at [SB + 0])

LOADL 7

LOADA [SB + 0]

LOADL 3

LOAD [ST - 1]

LOADL 0

LSS

JUMPIFNZ #0

LOAD [ST - 1]

LOADL 10

LSS

JUMPIFNZ #1

#0: CALL ixerror

#1: LOADL 1

MUL

ADD

STOREI 0
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Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.
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Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.

- indirect representation: array accessed
via a handle
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compile time.

- indirect representation: array accessed
via a handle

- handle itself has fixed size
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Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.

- indirect representation: array accessed
via a handle

- handle itself has fixed size

- handle contains pointer to array proper
and the array bounds
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Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.

- indirect representation: array accessed
via a handle

- handle itself has fixed size

- handle contains pointer to array proper
and the array bounds

- storage for array proper allocated at runtime
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Representing Arrays (4)

• Dynamic array: size of array not known at
compile time.

- indirect representation: array accessed
via a handle

- handle itself has fixed size

- handle contains pointer to array proper
and the array bounds

- storage for array proper allocated at runtime

- index checked by comparing with array
bounds stored in the handle.
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Representing Disjoint Unions (1)

• A disjoint union consists of a tag and a
variant part.
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Representing Disjoint Unions (1)

• A disjoint union consists of a tag and a
variant part.

• The value of the tag determines the type of
the variant part.
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Representing Disjoint Unions (1)

• A disjoint union consists of a tag and a
variant part.

• The value of the tag determines the type of
the variant part.

• Mathematically: T = T1 + . . .+ Tn; given tag i,
the variant part is a value chosen from type Ti.
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Representing Disjoint Unions (1)

• A disjoint union consists of a tag and a
variant part.

• The value of the tag determines the type of
the variant part.

• Mathematically: T = T1 + . . .+ Tn; given tag i,
the variant part is a value chosen from type Ti.

• Disjoint unions occur as

- variant records in Pascal and Ada

- algebraic data types in Haskell and ML

- object types in OO languages like Java, C#
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Representing Disjoint Unions (2)

• A disjoint union can be represented like a
record.
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Representing Disjoint Unions (2)

• A disjoint union can be represented like a
record.

• The value of the tag field determines the
layout of the rest of the record.
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Representing Disjoint Unions (2)

• A disjoint union can be represented like a
record.

• The value of the tag field determines the
layout of the rest of the record.

• If constant size is necessary, size is the
maximal size over the various possible
layouts.
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Representing Disjoint Unions (3)

Some Haskell Examples:

• data OptInt = NoInt | JustInt Int
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Representing Disjoint Unions (3)

Some Haskell Examples:

• data OptInt = NoInt | JustInt Int

- The first tag is NoInt; no variant part.
(Which is the same as saying that we have
a trivial variant part of the unit type ().)
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Representing Disjoint Unions (3)

Some Haskell Examples:

• data OptInt = NoInt | JustInt Int

- The first tag is NoInt; no variant part.
(Which is the same as saying that we have
a trivial variant part of the unit type ().)

- The second tag is JustInt; the variant
part is a single integer field.
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Representing Disjoint Unions (4)

• data Shape

= Triangle Point Point Point

| Rectangle Point Point

| Circle Point Radius
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Representing Disjoint Unions (4)

• data Shape

= Triangle Point Point Point

| Rectangle Point Point

| Circle Point Radius

- three tags; the variant parts are:
• Point triple
• Point pair
• Point and Radius pair.
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Representing Disjoint Unions (4)

• data Shape

= Triangle Point Point Point

| Rectangle Point Point

| Circle Point Radius

- three tags; the variant parts are:
• Point triple
• Point pair
• Point and Radius pair.

• data Colors = Red | Green | Blue
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Representing Disjoint Unions (4)

• data Shape

= Triangle Point Point Point

| Rectangle Point Point

| Circle Point Radius

- three tags; the variant parts are:
• Point triple
• Point pair
• Point and Radius pair.

• data Colors = Red | Green | Blue

- three tags; no variant parts.
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Representing Disjoint Unions (4)

• data Shape

= Triangle Point Point Point

| Rectangle Point Point

| Circle Point Radius

- three tags; the variant parts are:
• Point triple
• Point pair
• Point and Radius pair.

• data Colors = Red | Green | Blue

- three tags; no variant parts.

- this is thus just an enumeration type.
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Representing Recursive Types

• A recursive type is one defined in terms of
itself.
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Representing Recursive Types

• A recursive type is one defined in terms of
itself.

• Examples are linked lists and trees.
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Representing Recursive Types

• A recursive type is one defined in terms of
itself.

• Examples are linked lists and trees.

• Recursive types are usually represented
indirectly since this allows values of arbitrary
size to be referenced through a fixed size
handle.
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Uniform Representation (1)

Languages like Haskell and ML adopts a uniform
data representation: all values (even “primitive”
ones) have an indirect representation (pointer):
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Uniform Representation (1)

Languages like Haskell and ML adopts a uniform
data representation: all values (even “primitive”
ones) have an indirect representation (pointer):

• Uniform representation facilitates parametric
polymorphism.
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Uniform Representation (1)

Languages like Haskell and ML adopts a uniform
data representation: all values (even “primitive”
ones) have an indirect representation (pointer):

• Uniform representation facilitates parametric
polymorphism. E.g., the identity function

id x = x

can be compiled to a single piece of code
working for values of any type because all
values are represented same way.
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Uniform Representation (1)

Languages like Haskell and ML adopts a uniform
data representation: all values (even “primitive”
ones) have an indirect representation (pointer):

• Uniform representation facilitates parametric
polymorphism. E.g., the identity function

id x = x

can be compiled to a single piece of code
working for values of any type because all
values are represented same way.

• Recursive types supported automatically:
“everything is already a pointer”.
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Uniform Representation (2)

• Many OO languages, like Java and C#, adopt
a mostly uniform representation:

- All objects are represented by pointers.

- Recursive types thus supported.

- OO-style polymorphism: an object of a class
is also an object of any of the superclasses.

- Uniform layout of “common part” of object
to allow superclass methods to work on
subclass objects.
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Example: Haskell Tree Type (1)

This example illustrates

• disjoint union representation

• recursive type representation

• uniform representation (through pointers) of
values of all types.
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Example: Haskell Tree Type (2)

data Tree = Leaf Int

| Node Tree Tree

aTree = Node (Leaf 1)

(Node (Leaf 2) (Leaf 3))

Node

Leaf 1 Node

Leaf 2 Leaf 3
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Example: Haskell Tree Type (3)

Node

Leaf

INT 1

Node

Leaf

INT 2

Leaf

INT 3
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Example: Haskell Tree Type (4)

address contents

. . . . . .

10200008 INT

1020000C 1

10200010 INT

10200014 2

. . . . . .

2E4D0100 Leaf

2E4D0104 10200010

2E4D0108 Leaf

2E4D010C 10200018

. . . . . .

address contents

. . . . . .

2E4D0200 Node

2E4D0204 2E4D0100

2E4D0208 2E4D0108

2E4D020C Leaf

2E4D0210 10200008

2E4D0214 Node

2E4D0218 2E4D020C

2E4D021C 2E4D0200

. . . . . .
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Example: Haskell Tree Type (5)

Of course, the tags (Leaf, Node, and INT) must
also be represented. Two possibilities:
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Example: Haskell Tree Type (5)

Of course, the tags (Leaf, Node, and INT) must
also be represented. Two possibilities:

• A small integer, subject to nonconfusion. E.g.

Leaf = 0, Node = 1, INT = 0

(Representing both Leaf and INT with the
small integer 0 does not lead to confusion in a
statically typed language like Haskell.)
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Example: Haskell Tree Type (5)

Of course, the tags (Leaf, Node, and INT) must
also be represented. Two possibilities:

• A small integer, subject to nonconfusion. E.g.

Leaf = 0, Node = 1, INT = 0

(Representing both Leaf and INT with the
small integer 0 does not lead to confusion in a
statically typed language like Haskell.)

• A pointer to an information table.
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