
G53CMP: Lecture 16
Code Optimization

Henrik Nilsson

University of Nottingham, UK

G53CMP: Lecture 16 – p.1/51

This Lecture: Optimization

• Code improvement or optimization: what is it?

• High-, intermediate-, and low-level optimization.

• Time and space trade-offs.

• Specific optimizations; e.g.

- Constant folding

- Common subexpression evaluation

- Inlining

• Interaction among Optimizations

Fair bit of material: expect one and a half lectures.

G53CMP: Lecture 16 – p.2/51

Code Improvement (1)

The code generated by a compiler

• must be correct
(i.e., semantics-preserving translation)

• should also

- run fast

- be small

- use as little space as possible

Code improvement is the process of improving the
time and/or space behaviour of generated code
without changing its functional behaviour;
i.e. correctness must be preserved.

G53CMP: Lecture 16 – p.3/51

Code Improvement (2)

Consider:

w := 42;

i := 0;

while (i < 100) do begin

j := 0;

while (j < 200) do begin

x := (w * 10) * a[i];

y := y + x + b[j];

j := j + 1;

end;

i := i + 1;

end

How might this code fragment be changed to
make it run faster?

G53CMP: Lecture 16 – p.4/51

Code Improvement (3)

Example: Replacing the code fragment

f(x) + f(x)

by

2 * f(x)

saves a function call; likely reduces execution time.

Any caveat???

Only correct if f does not have any
(non-idempotent) side effects!

G53CMP: Lecture 16 – p.5/51

Code Improvement (4)

Consider:

var x: Integer;

...

fun f (y: Integer): Integer =

begin

x := x + 1;

return x + y

end

...

x := 2;

putint(f(2) + f(2))

This code fragment would print 11, whereas the
result of printing 2 * f(2) would be 10.

G53CMP: Lecture 16 – p.6/51

Code Improvement (5)

Note: “Side effect” includes:

• Updates of variables, data-structures

• I/O

• Changes to the system state

Idempotence: When an operation can be applied
more than once without changing the result
beyond the initial application.

E.g. x := 42 is an idempotent operation
becuase x := 42; x := 42 has the same
effect as just x := 42.

G53CMP: Lecture 16 – p.7/51

Optimization?

Code improvement usually referred to as
“optimization”. However:

• Hardly ever possible to guarantee optimality
under any mathematical measure.

• Not even always an improvement: not known
what is going to happen at run-time, so
“optimizing” for the average expected case.

• Careful and extensive benchmarking is often
the only way to verify that an optimization indeed
does improve generated code most of the time.

G53CMP: Lecture 16 – p.8/51

At What Level? (1)

Code improvement can be done at different levels:

• High level: source-to-source (AST)
transformations.

• Intermediate level: transformations on
intermediate representation, e.g.:

- “bare-bones” high-level language

- control/data flow graph representation

• Low level: transformations on machine code.

Each level suitable for different kinds of optimization.
Improve at all levels!

G53CMP: Lecture 16 – p.9/51

At What Level? (2)

Consider this code fragment:

if x then

if y then

putint(1)

else

putint(2)

else

putint(3)

Anything that obviously could be improved at this
level; i.e. the source code level?

G53CMP: Lecture 16 – p.10/51

At What Level? (3)

Resulting TAM code might be:

LOAD [SB + 12]

JUMPIFZ #0

LOADL [SB + 13]

JUMPIFZ #2

LOADL 1

CALL putint

JUMP #3

#2: LOADL 2

CALL putint

#3: JUMP #1

#0: LOADL 3

CALL putint

#1:

Now anything that could be improved;
i.e., at the machine code level?

G53CMP: Lecture 16 – p.11/51

At What Level? (4)

Information that was implicit in the high-level
representation might become explicit at the
intermediate level, thus enabling/facilitating
certain optimizations.

Consider array indexing. High-level code
fragments:

var x, y: array[1..100] Integer;

...

a := x[i] + y[i];

G53CMP: Lecture 16 – p.12/51

At What Level? (4)

Intermediate (C-like) code with explicit pointer
arithmetic:

if (i < 1 || i > 100) then raise index_bounds;

t1 := ˆ(x + 4 * (i - 1));

if (i < 1 || i > 100) then raise index_bounds;

t2 := ˆ(y + 4 * (i - 1));

a := t1 + t2

(^ is the pointer dereferencing operator.)

G53CMP: Lecture 16 – p.13/51

At What Level? (5)

This could be optimimzed by reusing common
subexpressions and eliminating redundant array
bounds checks:

if (i < 1 || i > 100) then raise index_bounds;

t0 := 4 * (i - 1)

t1 := ˆ(x + t0);

t2 := ˆ(y + t0);

a := t1 + t2;

G53CMP: Lecture 16 – p.14/51

Time vs. Space (1)

Time and space optimizations are often in conflict.
Consider representing an array of Booleans:

• Each Boolean represented by one machine word:

- fast access

- wastes space.

• Each Boolean represented by a single bit:

- space efficient

- access requires extra operations (shifting
and masking): takes time (and some
instruction space)!

G53CMP: Lecture 16 – p.15/51

Time vs. Space (2)

In other cases, small is fast as well:

• Basic observation: accessing memory is
slow. The fewer instructions and the fewer
pieces of data, the fewer memory accesses,
and the faster the execution.

• It is highly desirable to keep inner loops small
so that they fit in the first-level instruction cache.

• It is desirable to keep the set of “currently
accessed” memory locations small so that
they fit in the first-level data cache.

G53CMP: Lecture 16 – p.16/51

Time vs. Space (3)

But then again, since memory access is very
slow, avoiding a memory access could
sometimes be worth a few extra instructions!

(Reason: Instruction fetching is typically much
faster than data fetching because it is more
predictable.)

Conclusion: the trade-off between time and
space is a highly complicated issue!

In practice, one often has to make en educated
guess, then verify by benchmarking.

G53CMP: Lecture 16 – p.17/51

Common Optimization Techniques

Applicable at the source-code (AST) level and/or
intermediate level:

• Constant Folding

• Common Subexpression Elimination

• Algebraic Identities

• Copy Propagation

• Dead Code Elimination

• Strength Reduction

• Code Motion

• Loop Unrolling

• Inlining
G53CMP: Lecture 16 – p.18/51

Constant Folding (1)

Idea: evaluate (sub)expressions at compile-time
where possible:

const pi: Double = 3.1416;

var volume, radius: Double;

...

volume := 4/3 * pi * radiusˆ3;

4/3 * pi can be evaluated at compile-time:

const pi: Double = 3.1415;

var volume, radius: Double;

...

volume := 4.1888 * radiusˆ3;

G53CMP: Lecture 16 – p.19/51

Constant Folding (2)

Not only applicable to declared constants:

x := 3;

y := x + 1;

x := x * 2;

can be optimized to

x := 3;

y := 4;

x := 6;

G53CMP: Lecture 16 – p.20/51

Constant Folding (3)

In general, flow analysis required:

x := 3;

y := x + 1;

while (x < z) begin

x := x * 2

end

We can only optimize to:

x := 3;

y := 4;

while (x < z) begin

x := x * 2

end

(Unless z is known, but that is a different story.)
G53CMP: Lecture 16 – p.21/51

Common Subexpression Elimination (1)

Idea: avoid evaluating the “same expression”
more than once.

x1 := y1 + 7 * z + 42;

x2 := y2 + 7 * z + 42;

can be optimized to

t := 7 * z + 42;

x1 := y1 + t;

x2 := y2 + t;

Common subexpressions often appear in
address computations in intermediate code.

G53CMP: Lecture 16 – p.22/51

Common Subexpression Elimination (2)

The expressions must not only be syntactically
the same; they must also mean the same thing:

• Scope rules must be taken into account;
consider Haskell-like let-expressions (i.e.,
functional code, no side effects):

let x = y * 17 in

let y = 13 in

let z = y * 17

The innermost y * 17 cannot be replaced
by x.

G53CMP: Lecture 16 – p.23/51

Common Subexpression Elimination (3)

• Side effects must be taken into account (flow
analysis):

x := y * 17 + 3;

y := y + 1;

z := y * 17 + 3;

Here, the two instances of y * 17 + 3 do
not compute the same value.

Indeed, the expressions themselves could
have side effects (C-like increment operator):

x := y++ * 17 + 3;

z := y++ * 17 + 3;

G53CMP: Lecture 16 – p.24/51

Algebraic Identities (1)

Algebraic identities can be exploited to:

• simplify expressions: 1 * x - 0 ⇒ x

• expose further opportunities for e.g. common
subexpression evaluation:

x := (2 + z) * i;

y := (z + 2) * j;

can be transformed into

t := z + 2;

x := t * i;

y := t * j;

G53CMP: Lecture 16 – p.25/51

Algebraic Identities (2)

However, standard algebraic identities do not
always hold!

Is it safe to assume that x + (y + z) has the
same meaning as (x + y) + z?

• Not if overflow/underflow is trapped: if x and
y are large positive numbers, and z is a large
negative number, then (x + y) + z might
result in a trap, while x + (y + z) doesn’t.

• Floating point addition is not associative!

G53CMP: Lecture 16 – p.26/51

Copy Propagation (1)

Idea: After an assignment that copies a value,
like x := y (often result of earlier optimization),
use y in place of x wherever possible:

x := y;

v := x * 17;

w := x + 19;

can be transformed to

x := y;

v := y * 17;

w := y + 19;

G53CMP: Lecture 16 – p.27/51

Copy Propagation (2)

It may then turn out that the assigned variable is
never used again. In that case, the assignment
is dead code and can be eliminated.

x := y;

v := y * 17;

w := y + 19;

can be optimized to

v := y * 17;

w := y + 19;

if x is never used again.

G53CMP: Lecture 16 – p.28/51

Dead Code Elimination (1)

Idea: It may be possible to statically determine
that certain parts of the code

• will never be reached

• will not have any effect

The former is called unreachable code, the latter
dead code.

Sometimes unreachable code is also referred to
as dead code.

Either way, both are examples of useless code
that can be removed without changing the
meaning of the program.

G53CMP: Lecture 16 – p.29/51

Dead Code Elimination (2)

Consider the following Java fragment:

debug = false;

...

if (debug) {

System.out.println("Got here!");

}

After constant folding, we have

if (false) {

System.out.println("Got here!");

}

and the print statement is manifestly unreachable.

G53CMP: Lecture 16 – p.30/51

Dead Code Elimination (3)

In the copy propagation example, we saw that an
assignment like

x := y;

could be removed if x is never used again as it
has no effect and thus is dead code.

However, care needed: even if the assigned
variable is never used, execution of the
assignment statement itself might have an effect,
meaning it cannot be removed (in its entirety):

x := y++;

G53CMP: Lecture 16 – p.31/51

Strength Reduction (1)

Idea: replace “expensive” operations by cheaper
ones. Simple examples:

• Addition and shifting might be cheaper than
multiplication:

5 * x ⇒ x « 2 + x

• Multiplication might be cheaper than
exponentiation:

x^2 ⇒ x * x

z := x^5

⇒ x2 := x * x; z := x2 * x2 * x

Only applies when known integral power.
G53CMP: Lecture 16 – p.32/51

Strength Reduction (2)

A loop may have a number of induction
variables that remain in lock step:

i := 10;

while (i > 0) do begin

i := i - 1;

t := 4 * i;

a[i] := b[t]

end

Here, i and t are induction variables.

G53CMP: Lecture 16 – p.33/51

Strength Reduction (3)

All that is going on is that t decreases by 4 each
time round the loop. We can rephrase as follows:

i := 10;

t := 4 * i;

while (i > 0) do begin

i := i - 1;

t := t - 4;

a[i] := b[t]

end

An potentially expensive multiplication has been
replaced by a subtraction inside a loop.

G53CMP: Lecture 16 – p.34/51

Code Motion (1)

Idea: code that is loop invariant, i.e. evaluates
to the same value at each loop iteration, should
be moved outside the loop.

for (i := 0; i <= m - 1; i++) do

for (j := 0; j <= n - 1; j++) do

x := x + a[i * 10 + j]

• m - 1 and n - 1 invariant in the outer loop

• i * 10 invariant in the inner loop.

G53CMP: Lecture 16 – p.35/51

Code Motion (2)

Thus we can transform to:

t1 := m - 1;

t2 := n - 1;

for (i := 0; i <= t1; i++) do begin

t3 := i * 10;

for (j := 0; j <= t2; j++) do

x := x + a[t3 + j]

end

Array address computations and bounds checks
often introduce loop invariant code fragments.

G53CMP: Lecture 16 – p.36/51

Code Motion (3)

Of course, we have to be careful if there are side
effects. Consider:

for (i := 0; i < n; i++) do

x := x + f(17);

The function call f(17) might look like loop
invariant code at a first glance, but it could have
side effects, in which case it is wrong to move it
out of the loop:

f(n) = begin z := z + n; return z end;

G53CMP: Lecture 16 – p.37/51

Loop Unrolling (1)

As loops carry certain overheads (evaluation of
loop condition, jumps), it can be beneficial to
unroll loops that are known to be short. Consider:

for (i := 0; i < 5; i++) do

a[i] := b[4 - i] * 2^i;

Loop unrolling yields:

a[0] := b[4 - 0] * 2^0;

a[1] := b[4 - 1] * 2^1;

a[2] := b[4 - 2] * 2^2;

a[3] := b[4 - 3] * 2^3;

a[4] := b[4 - 4] * 2^4;

G53CMP: Lecture 16 – p.38/51

Loop Unrolling (2)

The resulting code can often be further
improved; e.g. by constant folding:

a[0] := b[4] * 1;

a[1] := b[3] * 2;

a[2] := b[2] * 4;

a[3] := b[1] * 8;

a[4] := b[0] * 16;

G53CMP: Lecture 16 – p.39/51

Loop Unrolling (3)

Caveats:

• Loop unrolling can cause the code to grow
considerably: space vs. time trade off.

• Impact of cache memories:

- The instructions for a short loop may fit into
the instruction cache and can thus be
fetched again very quickly for each
iteration.

- Each instruction for an unrolled loop has to
be fetched from main memory.

G53CMP: Lecture 16 – p.40/51

Loop Unrolling (4)

Loops where the bounds are statically unknown
can sometimes still be partially unrolled:

for (i := 0; i < n; i++) do

a[i] := b[i] + c[i];

can for example be transformed into (integer div.!):

for (i := 0; i < (n/2)*2; i := i+2) do begin

a[i] := b[i] + c[i];

a[i + 1] := b[i + 1] + c[i + 1]

end;

if (i < n) then begin

a[i] := b[i] + c[i];

i++

end;

G53CMP: Lecture 16 – p.41/51

Loop Unrolling (5)

Benefits:

• Number of iterations reduced (here, roughly
halved).

• Increased size of loop body may open up for
further improvements; e.g. constant folding,
CSE, strength reduction as discussed earlier
(in particular for index address calculations).

G53CMP: Lecture 16 – p.42/51

Inlining (1)

Idea: Avoid overhead of function/procedure call
by instantiating the body with the actual
parameters and copying the result to the call site.

Also called procedure integration.

• Inlined procedures/functions should be small,
or size of code might blow up!

• Careful with recursion! Otherwise the
compiler might get stuck in a loop.

• Can make sense to unfold recursive procedures/
functions a few times: similar to loop unrolling.

G53CMP: Lecture 16 – p.43/51

Inlining (2)

fun f (x: Integer): Integer =

begin

return (x + 17) * 123

end

...

x := f(a + 3);

y := f(x * 3);

Inlining would result in the last fragment
becoming:

x := ((a + 3) + 17) * 123;

y := ((x * 3) + 17) * 123;

G53CMP: Lecture 16 – p.44/51

Inlining (3)

Consider:

fun fib (x : Integer) : Integer =

begin

return (x<2 ? x : fib(x-1) + fib(x-2))

end

Recursion! Care needed!

If we blindly inline fib everywhere just because
it initially looks small, the compiler will get stuck
in a loop (exhausting the memory eventually)!

G53CMP: Lecture 16 – p.45/51

Interaction among Optimizations (1)

One optimization might generate opportunities
for other optimizations:

const level: Integer = 4;

const debugging: Boolean = true;

func debug(severity: Integer) =

begin

return debugging && severity > level

end

...

x := 10;

if debug(3) then begin

print "Oops! Well, got here.";

x := x + 1

end;

y := x + 10;

G53CMP: Lecture 16 – p.46/51

Interaction among Optimizations (2)

Inlining yields:

const level: Integer = 4;

const debugging: Boolean = true;

...

x := 10;

if debugging && 3 > level then begin

print "Oops! Well, got here.";

x := x + 1

end;

y := x + 10;

G53CMP: Lecture 16 – p.47/51

Interaction among Optimizations (3)

Constant folding yields:

x := 10;

if false then begin

print "Oops! Well, got here.";

x := x + 1

end;

y := x + 10;

G53CMP: Lecture 16 – p.48/51

Interaction among Optimizations (4)

Dead (unreachable) code elimination yields:

x := 10;

y := x + 10;

And now we can do further constant folding!

x := 10;

y := 20;

And then, if x never used again, more dead code
elimination!

y := 20;

G53CMP: Lecture 16 – p.49/51

Interaction among Optimizations (5)

• In general hard to pick a “best” order among
the optimizations.

• Compilers often carry out optimizations
iteratively until no further improvements can
be made.

G53CMP: Lecture 16 – p.50/51

Should I trust my compiler to optimize?

“Many of the optimizations we have seen could
be done by hand once and for all. So should we,
in order to guarantee that the code runs efficiently,
or should we trust the compiler to do it?”

• Trust the compiler! Without being naive, strive
to write clear and maintainable code.

• This reduces programmer effort and the risk
of making mistakes.

• If necessary, profile your code to identify
performance bottlenecks and hand-optimize
only when and where it really matters.

G53CMP: Lecture 16 – p.51/51

	This Lecture: Optimization
	Code Improvement (1)
	Code Improvement (2)
	Code Improvement (3)
	Code Improvement (4)
	Code Improvement (5)
	Optimization?
	At What Level? (1)
	At What Level? (2)
	At What Level? (3)
	At What Level? (4)
	At What Level? (4)
	At What Level? (5)
	Time vs. Space (1)
	Time vs. Space (2)
	Time vs. Space (3)
	Common Optimization Techniques
	Constant Folding (1)
	Constant Folding (2)
	Constant Folding (3)
	Common Subexpression Elimination (1)
	Common Subexpression Elimination (2)
	Common Subexpression Elimination (3)
	Algebraic Identities (1)
	Algebraic Identities (2)
	Copy Propagation (1)
	Copy Propagation (2)
	Dead Code Elimination (1)
	Dead Code Elimination (2)
	Dead Code Elimination (3)
	Strength Reduction (1)
	Strength Reduction (2)
	Strength Reduction (3)
	Code Motion (1)
	Code Motion (2)
	Code Motion (3)
	Loop Unrolling (1)
	Loop Unrolling (2)
	Loop Unrolling (3)
	Loop Unrolling (4)
	Loop Unrolling (5)
	Inlining (1)
	Inlining (2)
	Inlining (3)
	Interaction among Optimizations (1)
	Interaction among Optimizations (2)
	Interaction among Optimizations (3)
	Interaction among Optimizations (4)
	Interaction among Optimizations (5)
	Should I trust my compiler to optimize?

