G53CMP: Lecture 16 Code Optimization

Henrik Nilsson

University of Nottingham, UK

This Lecture: Optimization

- Code improvement or optimization: what is it?
- High-, intermediate-, and low-level optimization.
- Time and space trade-offs.
- Specific optimizations; e.g.
- Constant folding
- Common subexpression evaluation
- Inlining
- Interaction among Optimizations

Fair bit of material: expect one and a half lectures.

Code Improvement (1)

The code generated by a compiler

Code Improvement (1)

The code generated by a compiler

- must be correct
(i.e., semantics-preserving translation)

Code Improvement (1)

The code generated by a compiler

- must be correct
(i.e., semantics-preserving translation)
- should also

Code Improvement (1)

The code generated by a compiler

- must be correct
(i.e., semantics-preserving translation)
- should also
- run fast

Code Improvement (1)

The code generated by a compiler

- must be correct
(i.e., semantics-preserving translation)
- should also
- run fast
- be small

Code Improvement (1)

The code generated by a compiler

- must be correct
(i.e., semantics-preserving translation)
- should also
- run fast
- be small
- use as little space as possible

Code Improvement (1)

The code generated by a compiler

- must be correct
(i.e., semantics-preserving translation)
- should also
- run fast
- be small
- use as little space as possible

Code improvement is the process of improving the time and/or space behaviour of generated code without changing its functional behaviour;
i.e. correctness must be preserved.

Code Improvement (2)

Consider:

$$
\begin{aligned}
& \text { w := 42; } \\
& \text { i : = 0; } \\
& \text { while (i < 100) do begin } \\
& \text { j : = 0; } \\
& \text { while (j < 200) do begin } \\
& \mathrm{x}:=(\mathrm{w} \text { * 10) * a[i]; } \\
& \mathrm{y}:=\mathrm{y}+\mathrm{x}+\mathrm{b}[\mathrm{j}] ; \\
& j:=j+1 \text {; } \\
& \text { end; } \\
& \text { i }:=1+1 \text {; } \\
& \text { end }
\end{aligned}
$$

How might this code fragment be changed to make it run faster?

Code Improvement (3)

Example: Replacing the code fragment

$$
f(x)+f(x)
$$

by

$$
2 \text { * } f(x)
$$

saves a function call; likely reduces execution time.

Code Improvement (3)

Example: Replacing the code fragment

$$
f(x)+f(x)
$$

by

$$
2 * f(x)
$$

saves a function call; likely reduces execution time.
Any caveat???

Code Improvement (3)

Example: Replacing the code fragment

$$
f(x)+f(x)
$$

by

$$
2 * f(x)
$$

saves a function call; likely reduces execution time.
Any caveat???
Only correct if f does not have any
(non-idempotent) side effects!

Code Improvement (4)

Consider:

```
var x: Integer;
fun f (y: Integer): Integer =
    begin
        x := x + 1;
        return x + y
    end
x := 2;
putint(f(2) + f(2))
```

This code fragment would print 11, whereas the result of printing 2 * $£(2)$ would be 10.

Code Improvement (5)

Note: "Side effect" includes:

- Updates of variables, data-structures
- I/O
- Changes to the system state

Code Improvement (5)

Note: "Side effect" includes:

- Updates of variables, data-structures
- I/O
- Changes to the system state

Idempotence: When an operation can be applied more than once without changing the result beyond the initial application.
E.g. $x:=42$ is an idempotent operation becuase $\mathrm{x}:=42$; $\mathrm{x}:=42$ has the same effect as just x := 42 .

Optimization?

Code improvement usually referred to as "optimization". However:

Optimization?

Code improvement usually referred to as "optimization". However:

- Hardly ever possible to guarantee optimality under any mathematical measure.

Optimization?

Code improvement usually referred to as "optimization". However:

- Hardly ever possible to guarantee optimality under any mathematical measure.
- Not even always an improvement: not known what is going to happen at run-time, so "optimizing" for the average expected case.

Optimization?

Code improvement usually referred to as "optimization". However:

- Hardly ever possible to guarantee optimality under any mathematical measure.
- Not even always an improvement: not known what is going to happen at run-time, so "optimizing" for the average expected case.
- Careful and extensive benchmarking is often the only way to verify that an optimization indeed does improve generated code most of the time.

At What Level? (1)

Code improvement can be done at different levels:

At What Level? (1)

Code improvement can be done at different levels:

- High level: source-to-source (AST) transformations.

At What Level? (1)

Code improvement can be done at different levels:

- High level: source-to-source (AST) transformations.
- Intermediate level: transformations on intermediate representation, e.g.:
- "bare-bones" high-level language
- control/data flow graph representation

At What Level? (1)

Code improvement can be done at different levels:

- High level: source-to-source (AST) transformations.
- Intermediate level: transformations on intermediate representation, e.g.:
- "bare-bones" high-level language
- contro/data flow graph representation
- Low level: transformations on machine code.

At What Level? (1)

Code improvement can be done at different levels:

- High level: source-to-source (AST) transformations.
- Intermediate level: transformations on intermediate representation, e.g.:
- "bare-bones" high-level language
- contro//data flow graph representation
- Low level: transformations on machine code.

Each level suitable for different kinds of optimization. Improve at all levels!

At What Level? (2)

Consider this code fragment:

$$
\begin{aligned}
& \text { if } x \text { then } \\
& \text { if } y \text { then } \\
& \text { putint (1) } \\
& \text { else } \\
& \text { putint (2) } \\
& \text { else putint (3) }
\end{aligned}
$$

Anything that obviously could be improved at this level; i.e. the source code level?

At What Level? (3)

Resulting TAM code might be:

LOAD	$[S B+12]$	$\# 2:$	LOADL	2
JUMP IFZ	\#0		CALL	putint
LOADL	$[S B+13]$	$\# 3:$	JUMP	$\# 1$
JUMP IFZ	$\# 2$	$\# 0:$	LOADL	3
LOADL	1		CALL	putint
CALL	putint	$\# 1:$		
JUMP	$\# 3$			

Now anything that could be improved; i.e., at the machine code level?

At What Level? (4)

Information that was implicit in the high-level representation might become explicit at the intermediate level, thus enabling/facilitating certain optimizations.

Consider array indexing. High-level code fragments:

```
var x, y: array[1..100] Integer;
a := x[i] + y[i];
```


At What Level? (4)

Intermediate (C-like) code with explicit pointer arithmetic:
if (i < $1 \mid$ i > 100) then raise index_bounds;
t1 : = ^(x + 4 * (i - 1)) ;
if (i < 1 || i > 100) then raise index_bounds;
t2 $:={ }^{\wedge}(y+4$ * $(i-1))$;
a $:=t 1+t 2$
(^ is the pointer dereferencing operator.)

At What Level? (5)

This could be optimimzed by reusing common subexpressions and eliminating redundant array bounds checks:

```
if (i < 1 || i > 100) then raise index_bounds;
t0 := 4 * (i - 1)
t1 := ^(x + t0);
t2 := ^(y + t0);
a := t1 + t2;
```


Time vs. Space (1)

Time and space optimizations are often in conflict. Consider representing an array of Booleans:

- Each Boolean represented by one machine word:
- fast access
- wastes space.
- Each Boolean represented by a single bit:
- space efficient
- access requires extra operations (shifting and masking): takes time (and some instruction space)!

Time vs. Space (2)

In other cases, small is fast as well:

Time vs. Space (2)

In other cases, small is fast as well:

- Basic observation: accessing memory is slow. The fewer instructions and the fewer pieces of data, the fewer memory accesses, and the faster the execution.

Time vs. Space (2)

In other cases, small is fast as well:

- Basic observation: accessing memory is slow. The fewer instructions and the fewer pieces of data, the fewer memory accesses, and the faster the execution.
- It is highly desirable to keep inner loops small so that they fit in the first-level instruction cache.

Time vs. Space (2)

In other cases, small is fast as well:

- Basic observation: accessing memory is slow. The fewer instructions and the fewer pieces of data, the fewer memory accesses, and the faster the execution.
- It is highly desirable to keep inner loops small so that they fit in the first-level instruction cache.
- It is desirable to keep the set of "currently accessed" memory locations small so that they fit in the first-level data cache.

Time vs. Space (3)

But then again, since memory access is very slow, avoiding a memory access could sometimes be worth a few extra instructions!

Time vs. Space (3)

But then again, since memory access is very slow, avoiding a memory access could sometimes be worth a few extra instructions!
(Reason: Instruction fetching is typically much faster than data fetching because it is more predictable.)

Time vs. Space (3)

But then again, since memory access is very slow, avoiding a memory access could sometimes be worth a few extra instructions!
(Reason: Instruction fetching is typically much faster than data fetching because it is more predictable.)

Conclusion: the trade-off between time and space is a highly complicated issue!

In practice, one often has to make en educated guess, then verify by benchmarking.

Common Optimization Techniques

Applicable at the source-code (AST) level and/or intermediate level:

- Constant Folding
- Common Subexpression Elimination
- Algebraic Identities
- Copy Propagation
- Dead Code Elimination
- Strength Reduction
- Code Motion
- Loop Unrolling
- Inlining

Constant Folding (1)

Idea: evaluate (sub)expressions at compile-time where possible:

$$
\begin{aligned}
& \text { const pi: Double }=3.1416 ; \\
& \text { var volume, radius: Double; } \\
& \text { ‥ } \\
& \text { volume }:=4 / 3 * \text { pi } * \text { radius^3; }
\end{aligned}
$$

$4 / 3$ * pi can be evaluated at compile-time:
const pi: Double = 3.1415;
var volume, radius: Double;
volume := 4.1888 * radius^3;

Constant Folding (2)

Not only applicable to declared constants:

$$
\begin{aligned}
& \mathrm{x}:=3 ; \\
& \mathrm{y}:=\mathrm{x}+1 ; \\
& \mathrm{x}:=\mathrm{x} * 2 ;
\end{aligned}
$$

can be optimized to

$$
\begin{aligned}
& \mathrm{x}:=3 ; \\
& \mathrm{y}:=4 ; \\
& \mathrm{x}:=6 ;
\end{aligned}
$$

Constant Folding (3)

In general, flow analysis required:

$$
\begin{aligned}
& \mathrm{x}:=3 ; \\
& \mathrm{y}:=\mathrm{x}+1 ; \\
& \text { while }(\mathrm{x}<\mathrm{z}) \text { begin } \\
& \quad \mathrm{x}:=\mathrm{x} * 2 \\
& \text { end }
\end{aligned}
$$

We can only optimize to:

$$
\begin{aligned}
& x:=3 ; \\
& y:=4 ; \\
& \text { while }(x<z) \text { begin } \\
& \quad x:=x * 2 \\
& \text { end }
\end{aligned}
$$

(Unless z is known, but that is a different story.)

Common Subexpression Elimination (1)

Idea: avoid evaluating the "same expression" more than once.

$$
\begin{aligned}
& \mathrm{x} 1:=\mathrm{y} 1+7 \text { * } \mathrm{z}+42 ; \\
& \mathrm{x} 2:=\mathrm{y} 2+7 \text { * }+42 ;
\end{aligned}
$$

can be optimized to

$$
\begin{aligned}
& t:=7 \star z+42 ; \\
& x 1:=y 1+t ; \\
& x 2:=y^{2}+t ;
\end{aligned}
$$

Common subexpressions often appear in address computations in intermediate code.

Common Subexpression Elimination (2)

The expressions must not only be syntactically the same; they must also mean the same thing:

- Scope rules must be taken into account; consider Haskell-like let-expressions (i.e., functional code, no side effects):

$$
\text { let } \begin{array}{rl}
\mathrm{x}=\mathrm{y} & * 17 \mathrm{in} \\
& \text { let } \mathrm{y}=13 \text { in } \\
& \text { let } \mathrm{z}=\mathrm{y} * 17
\end{array}
$$

The innermost y * 17 cannot be replaced by x .

Common Subexpression Elimination (3)

- Side effects must be taken into account (flow analysis):

$$
\begin{aligned}
& \mathrm{x}:=\mathrm{y} * 17+3 ; \\
& \mathrm{y}:=\mathrm{y}+1 ; \\
& \mathrm{z}:=\mathrm{y} * 17+3 ;
\end{aligned}
$$

Here, the two instances of y * $17+3$ do not compute the same value.
Indeed, the expressions themselves could have side effects (C-like increment operator):

$$
\begin{aligned}
& \mathrm{x}:=\mathrm{y}++\star 17+3 ; \\
& \mathrm{z}:=\mathrm{y}++\star 17+3 ;
\end{aligned}
$$

Algebraic Identities (1)

Algebraic identities can be exploited to:

Algebraic Identities (1)

Algebraic identities can be exploited to:

- simplify expressions: 1 * $\mathrm{x}-0 \Rightarrow \mathrm{x}$

Algebraic Identities (1)

Algebraic identities can be exploited to:

- simplify expressions: 1 * $\mathrm{x}-0 \Rightarrow \mathrm{x}$
- expose further opportunities for e.g. common subexpression evaluation:

$$
\begin{aligned}
& \mathrm{X}:=(2+z) \star i ; \\
& \mathrm{Y}:=(\mathrm{z}+2) \star j ;
\end{aligned}
$$

can be transformed into

$$
\begin{aligned}
t & :=z+2 ; \\
\mathrm{x} & :=t * i ; \\
y & :=t * j ;
\end{aligned}
$$

Algebraic Identities (2)

However, standard algebraic identities do not always hold!

Algebraic Identities (2)

However, standard algebraic identities do not always hold!
Is it safe to assume that $x+(y+z)$ has the same meaning as $(x+y)+z$?

Algebraic Identities (2)

However, standard algebraic identities do not always hold!
Is it safe to assume that $x+(y+z)$ has the same meaning as $(x+y)+z$?

- Not if overflow/underflow is trapped: if x and y are large positive numbers, and z is a large negative number, then $(x+y)+z$ might result in a trap, while $x+(y+z)$ doesn't.

Algebraic Identities (2)

However, standard algebraic identities do not always hold!
Is it safe to assume that $x+(y+z)$ has the same meaning as $(x+y)+z$?

- Not if overflow/underflow is trapped: if x and y are large positive numbers, and z is a large negative number, then $(x+y)+z$ might result in a trap, while $x+(y+z)$ doesn't.
- Floating point addition is not associative!

Copy Propagation (1)

Idea: After an assignment that copies a value, like $x:=y$ (often result of earlier optimization), use y in place of x wherever possible:

$$
\begin{aligned}
\mathrm{X} & :=\mathrm{Y} ; \\
\mathrm{V} & :=\mathrm{x} * 17 ; \\
\mathrm{W} & :=\mathrm{x}+19 ;
\end{aligned}
$$

can be transformed to

$$
\begin{aligned}
\mathrm{X} & :=\mathrm{Y} \\
\mathrm{~V} & :=\mathrm{Y} * 17 ; \\
\mathrm{W} & :=\mathrm{Y}+19 ;
\end{aligned}
$$

Copy Propagation (2)

It may then turn out that the assigned variable is never used again. In that case, the assignment is dead code and can be eliminated.

$$
\begin{aligned}
\mathrm{X} & :=\mathrm{Y} ; \\
\mathrm{V} & :=\mathrm{Y} * 17 ; \\
\mathrm{W} & :=\mathrm{Y}+19 ;
\end{aligned}
$$

can be optimized to

$$
\begin{aligned}
\mathrm{V} & :=\mathrm{y} * 17 ; \\
\mathrm{W} & :=\mathrm{y}+19 ;
\end{aligned}
$$

if x is never used again.

Dead Code Elimination (1)

Idea: It may be possible to statically determine that certain parts of the code

- will never be reached
- will not have any effect

The former is called unreachable code, the latter dead code.

Dead Code Elimination (1)

Idea: It may be possible to statically determine that certain parts of the code

- will never be reached
- will not have any effect

The former is called unreachable code, the latter dead code.
Sometimes unreachable code is also referred to as dead code.

Dead Code Elimination (1)

Idea: It may be possible to statically determine that certain parts of the code

- will never be reached
- will not have any effect

The former is called unreachable code, the latter dead code.
Sometimes unreachable code is also referred to as dead code.
Either way, both are examples of useless code that can be removed without changing the meaning of the program.

Dead Code Elimination (2)

Consider the following Java fragment:

```
debug = false;
if (debug) {
    System.out.println("Got here!");
}
```

After constant folding, we have

```
if (false) {
    System.out.println("Got here!");
```

\}
and the print statement is manifestly unreachable.

Dead Code Elimination (3)

In the copy propagation example, we saw that an assignment like
x := y;
could be removed if x is never used again as it has no effect and thus is dead code.

Dead Code Elimination (3)

In the copy propagation example, we saw that an assignment like

$$
x:=y ;
$$

could be removed if x is never used again as it has no effect and thus is dead code.

However, care needed: even if the assigned variable is never used, execution of the assignment statement itself might have an effect, meaning it cannot be removed (in its entirety):

$$
\mathrm{x}:=\mathrm{y}^{++} ;
$$

Strength Reduction (1)

Idea: replace "expensive" operations by cheaper ones. Simple examples:

Strength Reduction (1)

Idea: replace "expensive" operations by cheaper ones. Simple examples:

- Addition and shifting might be cheaper than multiplication:

$$
5 \star x \Rightarrow x \ll 2+x
$$

Strength Reduction (1)

Idea: replace "expensive" operations by cheaper ones. Simple examples:

- Addition and shifting might be cheaper than multiplication:

$$
5 \star x \Rightarrow x \ll 2+x
$$

- Multiplication might be cheaper than exponentiation:

$$
\begin{aligned}
& x^{\wedge} 2 \Rightarrow x * x \\
& z:=x^{\wedge} 5 \\
& \Rightarrow x 2:=x * x ; z:=x 2 * x 2 * x \\
& \text { Only applies when known integral power. }
\end{aligned}
$$

Strength Reduction (2)

A loop may have a number of induction variables that remain in lock step:

$$
\begin{aligned}
& \text { i }:=10 ; \\
& \text { while }(i>0) \text { do begin } \\
& \quad i \quad:=i-1 ; \\
& t:=4 * i ; \\
& \\
& \quad \text { a[i] }:=b[t]
\end{aligned}
$$

Here, i and t are induction variables.

Strength Reduction (3)

All that is going on is that t decreases by 4 each time round the loop. We can rephrase as follows:

$$
\begin{aligned}
& \begin{aligned}
& i=10 ; \\
& t:=4 \star i ; \\
& \text { while }(i>0) \text { do begin } \\
& i \quad:=i-1 ; \\
& t:=t-4 ; \\
& a[i]:=b[t]
\end{aligned} \\
& \text { end }
\end{aligned}
$$

An potentially expensive multiplication has been replaced by a subtraction inside a loop.

Code Motion (1)

Idea: code that is loop invariant, i.e. evaluates to the same value at each loop iteration, should be moved outside the loop.

$$
\begin{aligned}
& \text { for (i := 0; i <= m - 1; i++) do } \\
& \text { for (j := 0; j <= n - } 1 \text {; j++) do } \\
& x:=x+a[i * 10+j]
\end{aligned}
$$

- m - 1 and $n-1$ invariant in the outer loop
- i * 10 invariant in the inner loop.

Code Motion (2)

Thus we can transform to:

$$
\begin{aligned}
& \text { t1 }:=m-1 ; \\
& \text { t2 }:=n-1 ; \\
& \text { for }(i:=0 ; i<=t 1 ; i++) \text { do begin } \\
& \text { t3 }:=i \star 10 ; \\
& \text { for }(j:=0 ; j<=t 2 ; j++) \text { do } \\
& \quad x:=x+a[t 3+j]
\end{aligned}
$$

end
Array address computations and bounds checks often introduce loop invariant code fragments.

Code Motion (3)

Of course, we have to be careful if there are side effects. Consider:

$$
\begin{aligned}
\text { for } & (i:=0 ; i<n ; i++) \\
& x:=x+f(17) ;
\end{aligned}
$$

The function call $£(17)$ might look like loop invariant code at a first glance, but it could have side effects, in which case it is wrong to move it out of the loop:

$$
f(n)=\text { begin } z:=z+n ; \text { return } z \text { end; }
$$

Loop Unrolling (1)

As loops carry certain overheads (evaluation of loop condition, jumps), it can be beneficial to unroll loops that are known to be short. Consider:

$$
\begin{aligned}
\text { for } & (i \quad=0 ; i<5 ; i++) \text { do } \\
& a[i]:=b[4-i] * 2^{\wedge} i
\end{aligned}
$$

Loop Unrolling (1)

As loops carry certain overheads (evaluation of loop condition, jumps), it can be beneficial to unroll loops that are known to be short. Consider:

$$
\begin{aligned}
\operatorname{for}(i & :=0 ; i<5 ; i++) \\
& a[i]:=b[4-i] * 2^{\wedge} i
\end{aligned}
$$

Loop unrolling yields:

$$
\begin{aligned}
& \mathrm{a}[0]:=\mathrm{b}[4-0] \star 2^{\wedge} 0 ; \\
& \mathrm{a}[1]:=\mathrm{b}[4-1] \star 2^{\wedge} 1 ; \\
& \mathrm{a}[2] \quad:=\mathrm{b}[4-2] \star 2^{\wedge} 2 ; \\
& \mathrm{a}[3]:=\mathrm{b}[4-3] \star 2^{\wedge} 3 ; \\
& \mathrm{a}[4] \quad:=\mathrm{b}[4-4] \star 2^{\wedge} 4 ;
\end{aligned}
$$

Loop Unrolling (2)

The resulting code can often be further improved; e.g. by constant folding:

$$
\begin{aligned}
& \mathrm{a}[0]:=\mathrm{b}[4] * 1 ; \\
& \mathrm{a}[1]:=\mathrm{b}[3] * 2 ; \\
& \mathrm{a}[2]:=\mathrm{b}[2] * 4 ; \\
& \mathrm{a}[3]:=\mathrm{b}[1] * 8 ; \\
& \mathrm{a}[4]:=\mathrm{b}[0] * 16 ;
\end{aligned}
$$

Loop Unrolling (3)

Caveats:

- Loop unrolling can cause the code to grow considerably: space vs. time trade off.
- Impact of cache memories:
- The instructions for a short loop may fit into the instruction cache and can thus be fetched again very quickly for each iteration.
- Each instruction for an unrolled loop has to be fetched from main memory.

Loop Unrolling (4)

Loops where the bounds are statically unknown can sometimes still be partially unrolled:

$$
\begin{aligned}
\text { for } & (i \quad:=0 ; i<n ; i++) d o \\
& a[i]:=b[i]+c[i] ;
\end{aligned}
$$

can for example be transformed into (integer div.!):

$$
\begin{aligned}
& \text { for }(i \quad:=0 ; i<(n / 2) \star 2 ; i:=i+2) \text { do begin } \\
& \quad a[i]:=b[i]+c[i] ; \\
& \quad a[i+1]:=b[i+1]+c[i+1] \\
& \text { end; } \\
& \text { if }(i<n) \text { then begin } \\
& \quad a[i]:=b[i]+c[i] ; \\
& \quad i++
\end{aligned}
$$

Loop Unrolling (5)

Benefits:

- Number of iterations reduced (here, roughly halved).
- Increased size of loop body may open up for further improvements; e.g. constant folding, CSE, strength reduction as discussed earlier (in particular for index address calculations).

Inlining (1)

Idea: Avoid overhead of function/procedure call by instantiating the body with the actual parameters and copying the result to the call site. Also called procedure integration.

Inlining (1)

Idea: Avoid overhead of function/procedure call by instantiating the body with the actual parameters and copying the result to the call site. Also called procedure integration.

- Inlined procedures/functions should be small, or size of code might blow up!

Inlining (1)

Idea: Avoid overhead of function/procedure call by instantiating the body with the actual parameters and copying the result to the call site. Also called procedure integration.

- Inlined procedures/functions should be small, or size of code might blow up!
- Careful with recursion! Otherwise the compiler might get stuck in a loop.

Inlining (1)

Idea: Avoid overhead of function/procedure call by instantiating the body with the actual parameters and copying the result to the call site. Also called procedure integration.

- Inlined procedures/functions should be small, or size of code might blow up!
- Careful with recursion! Otherwise the compiler might get stuck in a loop.
- Can make sense to unfold recursive procedures/ functions a few times: similar to loop unrolling.

Inlining (2)

$$
\begin{aligned}
& \text { fun } f(x \text { : Integer) : Integer }= \\
& \text { begin } \\
& \quad \text { return }(x+17) * 123 \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}:=\mathrm{f}(\mathrm{a}+3) ; \\
& \mathrm{y}:=\mathrm{f}(\mathrm{x} * 3) ;
\end{aligned}
$$

Inlining would result in the last fragment becoming:

$$
\begin{aligned}
& x:=((a+3)+17) * 123 ; \\
& y:=((x * 3)+17) * 123 ;
\end{aligned}
$$

Inlining (3)

Consider:

$$
\begin{aligned}
& \text { fun fib }(x: \text { Integer }) \text { : Integer }= \\
& \text { begin } \\
& \qquad \text { return }(x<2 \quad x: \text { fib }(x-1)+\text { fib }(x-2)) \\
& \text { end }
\end{aligned}
$$

Recursion! Care needed!
If we blindly inline fib everywhere just because it initially looks small, the compiler will get stuck in a loop (exhausting the memory eventually)!

Interaction among Optimizations (1)

One optimization might generate opportunities for other optimizations:

```
const level: Integer = 4;
const debugging: Boolean = true;
func debug(severity: Integer) =
begin
return debugging && severity > level
end
X := 10;
if debug(3) then begin
print "Oops! Well, got here.";
x := x + 1
end;
y := x + 10;
```


Interaction among Optimizations (2)

Inlining yields:

```
const level: Integer = 4;
const debugging: Boolean = true;
```

$\mathrm{x}:=10$;
if debugging \&\& 3 > level then begin

```
print "Oops! Well, got here.";
    x := x + 1
```

end;
$y:=x+10$;

Interaction among Optimizations (3)

Constant folding yields:

$$
\mathrm{x}:=10 ;
$$

if false then begin

$$
\begin{aligned}
& \text { print "Oops! Well, got here."; } \\
& \mathrm{x}:=\mathrm{x}+1
\end{aligned}
$$

end;
$y:=x+10 ;$

Interaction among Optimizations (4)

Dead (unreachable) code elimination yields:

$$
\begin{aligned}
& \mathrm{x}:=10 ; \\
& \mathrm{y}:=\mathrm{x}+10 ;
\end{aligned}
$$

Interaction among Optimizations (4)

Dead (unreachable) code elimination yields:

$$
\begin{aligned}
& \mathrm{x}:=10 ; \\
& \mathrm{y}:=\mathrm{x}+10 ;
\end{aligned}
$$

And now we can do further constant folding!

$$
\begin{aligned}
& \mathrm{x}:=10 ; \\
& \mathrm{y}:=20 ;
\end{aligned}
$$

Interaction among Optimizations (4)

Dead (unreachable) code elimination yields:

$$
\begin{aligned}
& \mathrm{x}:=10 ; \\
& \mathrm{y}:=\mathrm{x}+10 ;
\end{aligned}
$$

And now we can do further constant folding!

$$
\begin{aligned}
& \mathrm{X}:=10 ; \\
& \mathrm{y}:=20 ;
\end{aligned}
$$

And then, if x never used again, more dead code elimination!

$$
y:=20 ;
$$

Interaction among Optimizations (5)

- In general hard to pick a "best" order among the optimizations.

Interaction among Optimizations (5)

- In general hard to pick a "best" order among the optimizations.
- Compilers often carry out optimizations iteratively until no further improvements can be made.

Should I trust my compiler to optimize?

"Many of the optimizations we have seen could be done by hand once and for all. So should we, in order to guarantee that the code runs efficiently, or should we trust the compiler to do it?"

Should I trust my compiler to optimize?

"Many of the optimizations we have seen could be done by hand once and for all. So should we, in order to guarantee that the code runs efficiently, or should we trust the compiler to do it?"

- Trust the compiler! Without being naive, strive to write clear and maintainable code.

Should I trust my compiler to optimize?

"Many of the optimizations we have seen could be done by hand once and for all. So should we, in order to guarantee that the code runs efficiently, or should we trust the compiler to do it?"

- Trust the compiler! Without being naive, strive to write clear and maintainable code.
- This reduces programmer effort and the risk of making mistakes.

Should I trust my compiler to optimize?

"Many of the optimizations we have seen could be done by hand once and for all. So should we, in order to guarantee that the code runs efficiently, or should we trust the compiler to do it?"

- Trust the compiler! Without being naive, strive to write clear and maintainable code.
- This reduces programmer effort and the risk of making mistakes.
- If necessary, profile your code to identify performance bottlenecks and hand-optimize only when and where it really matters.

