
G53CMP: Lectures 17 & 18
Register Allocation

Henrik Nilsson

University of Nottingham, UK

G53CMP: Lectures 17 & 18 – p.1/44

Register Allocation (1)

• Register: One of a small number of very fast
storage elements internal to a CPU.

• Register allocation: Which register to use
for what purpose when.

• We have seen code generation for TAM, a
simple stack machine:

- All instructions target a stack.

- A few dedicated registers (e.g., SB, LB, ST).

- Register allocation thus a non-issue:
allocation decided once and for all by the
design of the TAM.

G53CMP: Lectures 17 & 18 – p.2/44

Register Allocation (2)

• Most real computers are register machines:

- Most instructions target registers; that is,
• instead of instructions like

ADD

(arguments from stack, result to stack)
• they have instructions like

ADD R3, R1, R2

(R3 := R1 + R2)

- Additionally, instructions for memory access.

- Stacks are implemented using memory,
registers, and memory access instructions.

- . . .
G53CMP: Lectures 17 & 18 – p.3/44

Register Allocation (3)

• Most real computers are register machines:

- . . .

- Very few registers, typically 8–32
word-sized ones, or 32–128 bytes of
memory.

- Cf. modern programs that often use
hundreds of Megabytes of memory.

- Additionally, registers may be:
• general purpose
• special purpose

G53CMP: Lectures 17 & 18 – p.4/44

Register Allocation (4)

The problem:

• On the one hand: Not enough registers to
keep all data in registers all the time; most
data has to be stored in the main memory.

• On the other hand:

- Have to use some registers because of
the way the instruction set is designed.

- Want to use as many registers as possible
because registers are very fast.

- Preferable to use registers for frequently
used data over seldomly used data.

G53CMP: Lectures 17 & 18 – p.5/44

Register Allocation (5)

Register allocation is thus an optimisation
problem:

• minimise the memory traffic (loads and
stores) by using registers

• subject to:

- not exceeding the available number of
registers;

- additional constraints imposed by some
registers having a special purpose or not
being fully general.

G53CMP: Lectures 17 & 18 – p.6/44

Register Allocation (6)

• What really is desirable is to minimise execution
time and/or the size of the target code.

• However, minimising the number of (executed)
load and store instructions usually reduce
both the execution time and the number of
generated instructions (size of the target code).

• Cache effects and instruction scheduling
further complicates matters, though.

Again, “optimization”/”minimisation” not used in
strict mathematical sense, but in relation to
assumed “average” case.

G53CMP: Lectures 17 & 18 – p.7/44

A Simple Register Machine

• Registers:

- Rn: general purpose registers
- SB: Stack Base
- LB: Local Base (stack frame)
- ST: Stack Top

• Some instructions (Ri etc. include SB, LB, ST):

- load Ri,[Rj + d]

- store Ri,[Rj + d]

- add Ri,Rj,Rk (Ri := Rj + Rk)
- mul Ri,Rj,Rk (Ri := Rj ∗ Rk)

• Displacement/offset d in bytes.
G53CMP: Lectures 17 & 18 – p.8/44

Exercise: RM Code Generation (1)

Given:

• Variable Address

x SB + 0

y SB + 4

z SB + 8

• general purpose registers R0, R1, . . .R9

generate code for

z := z * (x + y)

G53CMP: Lectures 17 & 18 – p.9/44

Exercise: RM Code Generation (2)

One possible answer:

load R0, [SB + 0] ; x

load R1, [SB + 4] ; y

add R2, R0, R1

load R3, [SB + 8] ; z

mul R4, R3, R2

store R4, [SB + 8] ; z

What if there were fewer registers available?
How many do you need?

G53CMP: Lectures 17 & 18 – p.10/44

Exercise: RM Code Generation (3)

Another possibility using only R0 and R1:

load R0, [SB + 0] ; x

load R1, [SB + 4] ; y

add R0, R0, R1

load R1, [SB + 8] ; z

mul R1, R1, R0

store R1, [SB + 8] ; z

G53CMP: Lectures 17 & 18 – p.11/44

Stack Frame or Activation Record

address contents
LB - argOffset arguments
.
LB static link
LB + 4 dynamic link
LB + 8 return address
LB + 12 local variables
.
LB + tempOffset temporary storage

where

argOffset = size(arguments)

tempOffset = 12 + size(variables)

(Offsets in bytes for register machine.)
G53CMP: Lectures 17 & 18 – p.12/44

Register Machine Code Generation (1)

We can implement a code generation function
evaluate in a similar way to the stack machine
code generator, except that it returns the
register in which the result will be stored.

Assuming a code generation monad CG for
keeping track of generated code, free registers,
etc., we’d get:

evaluate : Expression → CG Reg

(ignoring bookkeeping arguments such as scope
level and environment.)

G53CMP: Lectures 17 & 18 – p.13/44

Register Machine Code Generation (2)

Operation for getting a currently free register:

freeReg : CG Reg

In a naive scheme (or as a precursor to a register
allocation step), freeReg would always return a
previously unused register:

evaluate [[E1 + E2]] = do

r1 ← evaluate E1

r2 ← evaluate E2

r ← freeReg
emit (Add r r1 r2)
return r

G53CMP: Lectures 17 & 18 – p.14/44

Example: A Simple Function

var n: Integer;

...

fun f(x,y: Integer): Integer =

let

z: Integer

in begin

z := x * x + y * y;

return n * z

end

We will consider the body less the details of
storage allocation for z and return.

G53CMP: Lectures 17 & 18 – p.15/44

Naive Register Machine Code

Code for z := x*x + y*y; return n*z:
load R0, [LB - 8] ; offset(x) = −8

load R1, [LB - 8]

mul R2, R0, R1 ; R2 := x2

load R3, [LB - 4] ; offset(y) = −4

load R4, [LB - 4]

mul R5, R3, R4 ; R5 := y2

add R6, R2, R5 ; R6 := x2 + y2

store R6, [LB + 12] ; offset(z) = 12

load R7, [SB + 168] ; offset(n) = 4× 42

load R8, [LB + 12]

mul R9, R7, R8 ; R9 := n(x2 + y2)

G53CMP: Lectures 17 & 18 – p.16/44

Stack Machine Code

TAM-code for the example for comparison:

LOAD [LB - 2] ; x

LOAD [LB - 2] ; x

MUL

LOAD [LB - 1] ; y

LOAD [LB - 1] ; y

MUL

ADD

STORE [LB + 3] ; z

LOAD [SB + 42] ; n

LOAD [LB + 3] ; z

MUL

Note: all offsets are in words (4 bytes) for the
TAM (stack of word-sized memory cells).

G53CMP: Lectures 17 & 18 – p.17/44

Notes on the Naive Code

Fact: reading/writing memory is extremely slow
compared to reading/writing registers.

• The naive code is inefficient because many
unnecessary memory accesses.

Fact: the number of registers is strictly limited
(from a few to a few dozen)

• The naive code-generation scheme could fail
because it risks running out of registers.

G53CMP: Lectures 17 & 18 – p.18/44

Better Code (1)

Basic, ad-hoc, register allocation:

• Allocate registers for x and y: saves reading
them twice.

• Allocate a register for z: saves having to write
it to memory!

Note: even the naive code-generation scheme
employed a simple register allocation strategy for
keeping intermediate results in registers as
opposed to storing them in memory.

G53CMP: Lectures 17 & 18 – p.19/44

Better Code (2)

R0 used for x, R1 for y, R2 for z, R5 for n.
load R0, [LB - 8] ; offset(x) = −8

mul R3, R0, R0 ; R3 := x2

load R1, [LB - 4] ; offset(y) = −4

mul R4, R1, R1 ; R4 := y2

add R2, R3, R4 ; R2 := x2 + y2

load R5, [SB + 168] ; offset(n) = 4× 42

mul R6, R5, R2 ; R6 := n(x2 + y2)

• Fewer loads and stores

• Shorter code

• Fewer registers used

G53CMP: Lectures 17 & 18 – p.20/44

Saving Registers Across Calls (1)

Assume the calling convention is that the first
three arguments are passed in registers R0, R1,
R2 and the result is returned in R0.

Consider the following code fragment:

add R5, R6, R7 ; R5 := x+ y

load R0, [SB + 168] ; R0 := n

call factorial ; R0 := n!

mul R0, R5, R0 ; R0 := (x+ y)× n!

But what if factorial uses some registers, in
particular R5 as manifestly in use across the call?

G53CMP: Lectures 17 & 18 – p.21/44

Saving Registers Across Calls (2)

Two basic approaches:

• Caller Saves: Caller saves registers that are
in use; risks saving registers callee actually
will not use.

• Callee Saves: Callee saves registers that it
will use; risks saving registers that actually
were not in use in caller.

In practice, often a mixed approach: some registers
are designated caller-saves, others callee-saves.

Interprocedural optimization could improve code
further.

G53CMP: Lectures 17 & 18 – p.22/44

Saving Registers Across Calls (3)

Assuming R5 is a caller-saves register and the
only register that is in use across the call, the
code fragment becomes:

add R5, R6, R7 ; R5 := x+ y

load R0, [SB + 168] ; R0 := n

store R5, [LB + 30] ; Save R5

call factorial ; R0 := n!

load R5, [LB + 30] ; Restore R5

mul R0, R5, R0 ; R0 := (x+ y)× n!

(LB + 30 is assumed to be address of free
space in the temporary area.)

G53CMP: Lectures 17 & 18 – p.23/44

Automatic Register Allocation

How can we:

• Automatically decide which registers to use?

• Keep the number of registers used down?

- Only a fixed, small number of registers
available.

- Each register must thus be used for many
purposes.

G53CMP: Lectures 17 & 18 – p.24/44

Register Pressure

Register Pressure: the number of registers
used by a code fragment.

Desirable to keep register pressure low:

• Minimizing the pressure maximizes the size
of the code for which no auxiliary storage
(primary memory) is needed.

• Low pressure means fewer registers to
preserve (in primary memory) across subroutine
calls (both caller and callee saves schemes).

G53CMP: Lectures 17 & 18 – p.25/44

Liveness (1)

• Need to take liveness of variables and
intermediate results into account to make it
possible to use one register for many
purposes.

• A variable v is live at point p if there is an
execution path from p to a use of v along
which v is not updated.

• No need to keep dead variables in registers!

G53CMP: Lectures 17 & 18 – p.26/44

Liveness (2)

Example:

1 x := 3 * m;

2 y := 42 + x;

3 z := y * x;

4 if z > 0 then u := x else u := 0;

5 y := u;

6 return y;

• x is live immediately before line 4 because it
may be used at line 4.

• y from line 2 is dead immediately before line 4
because y is updated before being used again.

G53CMP: Lectures 17 & 18 – p.27/44

Liveness (3)

Example:

1 x := 3 * m;

2 y := 42 + x;

3 z := y * x;

4 if z > 0 then u := x else u := 0;

5 y := u;

6 return y;

• u is dead before line 4 because it is updated
in both branches of the if at line 4.

G53CMP: Lectures 17 & 18 – p.28/44

Liveness (4)

But consider this variation instead:

1 x := 3 * m;

2 y := 42 + x;

3 z := y * x;

4 if z > 0 then u := x else v := 0;

5 y := u;

6 return y;

• Now u is live before line 4 because there
exists at least one path to the use of u at line
5 along which u is not updated.

G53CMP: Lectures 17 & 18 – p.29/44

Exercise: Liveness

Consider:

1 i := m;

2 n := 1;

3 while (i < 10) do begin

4 n := n * p;

5 i := i + 1

6 end

7 return n;

Which of i, m, n, p are live immediately before:
• line 1

• line 3

• line 5

• line 7

G53CMP: Lectures 17 & 18 – p.30/44

Liveness for the Running Example

load R0, [LB - 8] ; offset(x) = −8

mul R3, R0, R0 ; R3 := x2

load R1, [LB - 4] ; offset(y) = −4

mul R4, R1, R1 ; R4 := y2

add R2, R3, R4 ; R2 := x2 + y2

load R5, [SB + 168] ; offset(n) = 4× 42

mul R6, R5, R2 ; R6 := n(x2 + y2)

• x (R0) and y (R1) only used once.

• z (R2) is alive only for a short time, and only
once x and y are dead.

• n (R5), interm. results (R4, R6) also short-lived.
G53CMP: Lectures 17 & 18 – p.31/44

Graph Colouring

Common approach for register allocation. Idea:

• Represent each variable by a node in a graph.
Called interference graph.

• Add an edge between two nodes if the
variables are live simultaneously.

• Colour the graph so that no two adjacent
nodes get the same colour, using as few
colours as possible.

• Each colour corresponds to a register.

• Hard optimization problem (NP-complete).

G53CMP: Lectures 17 & 18 – p.32/44

Example: Interference Graph

Consider:

y := x * x;

z := y + 42;

return y * z

Interference
graph:

x

y z

How
many
colours?

G53CMP: Lectures 17 & 18 – p.33/44

Graph Colouring for the Running Ex.

load R0, [LB - 8] ; offset(x) = −8

mul R3, R0, R0 ; R3 := x2

load R1, [LB - 4] ; offset(y) = −4

mul R4, R1, R1 ; R4 := y2

add R2, R3, R4 ; R2 := x2 + y2

load R5, [SB + 168] ; offset(n) = 4× 42

mul R6, R5, R2 ; R6 := n(x2 + y2)

• Draw and colour the interference graph

• Use the result to do a register allocation with
the minimal number of registers.

G53CMP: Lectures 17 & 18 – p.34/44

Code Using Minimal Number of Regs

The number of registers used reduced from 7 to 2:

load R0, [LB - 8] ; offset(x) = −8

mul R0, R0, R0 ; R0 := x2

load R1, [LB - 4] ; offset(y) = −4

mul R1, R1, R1 ; R1 := y2

add R0, R0, R1 ; R0 := x2 + y2

load R1, [SB + 168] ; offset(n) = 4× 42

mul R0, R1, R0 ; R0 := n(x2 + y2)

G53CMP: Lectures 17 & 18 – p.35/44

Implementation

Code generation usually proceeds in two passes:

1. Generate code assuming arbitrarily many
virtual registers (essentially the “naive”
approach).

2. Use graph colouring to bind each virtual
register to a physical register.

Note: above we started from a code where basic
(ad hoc) register allocation already had been
done for illustrative purposes.

G53CMP: Lectures 17 & 18 – p.36/44

Register Spilling

• What if the register pressure exceeds the
number of available registers?

- Register Spilling: storing the content of a
register into memory so as to free it and
thus reduce the register pressure.

- Intermediate results stored into the the
“temporary” storage area of the stack
frame/activation record.

- Deciding which register(s) to spill is
(another) hard optimization problem.

G53CMP: Lectures 17 & 18 – p.37/44

Register Spilling: Example (1)

Consider:

x * x + y * z

If three or more registers available:

load R0, [LB - 8] ; offset(x) = −8

mul R0, R0, R0 ; R0 := x2

load R1, [LB - 4] ; offset(y) = −4

load R2, [LB + 12] ; offset(z) = 12

mul R1, R1, R2 ; R1 := yz

add R0, R0, R1 ; R0 := x2 + yz

G53CMP: Lectures 17 & 18 – p.38/44

Register Spilling: Example (2)

x * x + y * z

If only two registers available

load R0, [LB - 8] ; offset(x) = −8

mul R0, R0, R0 ; R0 := x2

load R1, [LB - 4] ; offset(y) = −4

store R0, [LB + 16] ; Temporary storage

load R0, [LB + 12] ; offset(z) = 12

mul R0, R1, R0 ; R0 := yz

load R1, [LB + 16] ; R1 := x2

add R0, R1, R0 ; R0 := x2 + yz

G53CMP: Lectures 17 & 18 – p.39/44

Is Fewer Registers Always Better? (1)

We have seen there are reasons to minimize the
number of registers used:

• Ability to get by with as few registers as
possible reduces likelihood of having to spill.

• Fewer registers to save and restore across
subroutine calls.

G53CMP: Lectures 17 & 18 – p.40/44

Is Fewer Registers Always Better? (2)

But can there be downsides to not making use of
all registers there are?

Consider:

add R2, R0, R1

store R2, [...]

mul R3, R0, R1

A superscalar CPU can execute the add and
mul instructions in parallel because there is no
data dependence between them.

G53CMP: Lectures 17 & 18 – p.41/44

Is Fewer Registers Always Better? (3)

Consider instead:

add R2, R0, R1

store R2, [...]

mul R2, R0, R1

One fewer registers used, but no longer possible
to execute add and mul in parallel!

mul is anti-dependent on store (or Write After
Read (WAR) dependent).

Reducing the number of used registers might
have hurt the performance!

G53CMP: Lectures 17 & 18 – p.42/44

Is Fewer Registers Always Better? (4)

Thus, register allocation has impacted on instruction
scheduling which in turn impacted on performance.

But then again, a really clever CPU might use
hardware register renaming: using extra
registers behind the scenes.

Idea quite old: IBM 360/91 from 1966.

Commonly used; e.g. Pentium II/III/4, Athlon.

See e.g. Wikipedia for details.

G53CMP: Lectures 17 & 18 – p.43/44

Register Allocation: Complications

Register allocation may be further complicated
by architecture-specific issues:

• Special purpose registers; e.g. dedicated
registers for result of multiplication, memory
addressing, etc.

• Registers of varying size.

• Non-uniform instruction set, and thus
complicated interaction between code
selection and register allocation.

G53CMP: Lectures 17 & 18 – p.44/44

	Register Allocation (1)
	Register Allocation (2)
	Register Allocation (3)
	Register Allocation (4)
	Register Allocation (5)
	Register Allocation (6)
	A Simple Register Machine
	Exercise: RM Code Generation (1)
	Exercise: RM Code Generation (2)
	Exercise: RM Code Generation (3)
	Stack Frame or Activation Record
	Register Machine Code Generation (1)
	Register Machine Code Generation (2)
	Example: A Simple Function
	Naive Register Machine Code
	Stack Machine Code
	Notes on the Naive Code
	Better Code (1)
	Better Code (2)
	Saving Registers Across Calls (1)
	Saving Registers Across Calls (2)
	Saving Registers Across Calls (3)
	Automatic Register Allocation
	Register Pressure
	Liveness (1)
	Liveness (2)
	Liveness (3)
	Liveness (4)
	Exercise: Liveness
	Liveness for the Running Example
	Graph Colouring
	Example: Interference Graph
	Graph Colouring for the Running Ex.
	Code Using Minimal Number of Regs
	Implementation
	Register Spilling
	Register Spilling: Example (1)
	Register Spilling: Example (2)
	Is Fewer Registers Always Better? (1)
	Is Fewer Registers Always Better? (2)
	Is Fewer Registers Always Better? (3)
	Is Fewer Registers Always Better? (4)
	Register Allocation: Complications

