
G53CMP: Lecture 19
LLVM: A Real Compiler Backend

Henrik Nilsson

University of Nottingham, UK

G53CMP: Lecture 19 – p.1/24

Result SEM G53CMP 2018/19 (1)

Scale: 5 is agree/positive; 1 is disagree/negative.

Question G53CMP All modules

1 Opportunities to explore 4.17 4.26

2 Challenged me to deliver 4.22 4.09

3 Well organised 4.33 4.18

4 Resources helpful 3.39 3.97

5 Clear marking criteria 3.78 3.86

6 Reasonable workload 3.44 0.98(?)

7 Overall satisfied 3.89 0.98(?)

G53CMP: Lecture 19 – p.2/24

Result SEM G53CMP 2018/19 (2)

• On the whole, you were happy with the module,
but less so than last year (4.53). The marked
drop was a surprise to me.

- Reservations about workload (4.29 last year)
• Coursework weight effectively 50%
• 100 h?

- Resource score also dropped (Cf. 3.98)

• A lot of good feedback. Will be taken aboard!

G53CMP: Lecture 19 – p.3/24

Result SEM G53CMP 2018/19 (3)

Emerging themes:

• Writing compiler from scratch? Targeting
something “real”?
Difficult balance between e.g.:

- work load

- providing an opportunity to study and work
with something not too unrealistic

- covering all key aspects (incl. type
checking)

- ease of debugging

- freedom of exploring
G53CMP: Lecture 19 – p.4/24

Result SEM G53CMP 2018/19 (4)

Emerging themes:

• Too large topic for a 10 credit module

Perhaps extend to 20 credit module?

G53CMP: Lecture 19 – p.5/24

LLVM (1)

LLVM (formerly Low Level Virtual Machine) is a
compiler infrastructure project:

• Highly modular and extensible; at its core:

- Set of reusable libraries

- Well-defined interfaces

• Designed for static and dynamic (JIT)
compilation and optimzation: compile-time,
link-time, load/installation-time, run-time.

• Language agnostic: LLVM-based compilers
for Ada, C, C++, Fortran, Haskell, Java bytecode,
OpenGL Shading Language, Python, Scala.

G53CMP: Lecture 19 – p.6/24

LLVM (2)

Some background:

• The LLVM project started in 2000 at the
University of Illinois at Urbana-Champaign.

• Directed by Vikram Adve and Chris Lattner.

• Lattner later hired by Apple Inc.

• LLVM integral part of Apple’s development
tools for OS X and iOS.

• LLVM is Open Source.

• Adve, Lattner, and Evan Cheng awarded the
ACM Software System Award for LLVM in 2012.

G53CMP: Lecture 19 – p.7/24

Motivations for LLVM (1)

When LLVM started:

• Open-source language implementations
tended to be monolithic; e.g. GCC:

- Extremely hard to reuse individual parts

- Not even a self-contained intermediate
representation

• Implementations tended to either support
static or JIT compilation.

• The text-book vision of multiple independent
front-ends and back-ends around a shared
compiler core hardly ever realised in practice.

G53CMP: Lecture 19 – p.8/24

LLVM IR (1)

The LLVM Intermediate Representation (IR) is
the “glue” that holds LLVM together.

• Complete, self-contained representation: a
first-class language with well-defined
semantics.

• Designed to host mid-level analyses and
transformations.

• RISC-like code.

• Sufficiently low-level to be a suitable
translation target for any language.

G53CMP: Lecture 19 – p.9/24

LLVM IR (2)

• Sufficiently high-level to allow targeting
arbitrary concrete architectures; e.g.:

- Unbounded number of registers

- Abstraction over calling conventions

• Typed:

- Base types: integers (of different sizes),
floating point numbers

- Derived types: pointers, arrays, vectors,
structures, functions

• Static Single Assignment (SSA): SSA form
for all scalar registers (everything except memory).

G53CMP: Lecture 19 – p.10/24

LLVM IR (3)

• Three isomorphic forms:

- Textual format (.ll)

- Compact, on-disk, “bitcode” format (.bc)

- In-memory data structure.

Some tools:

- llvm-as: .ll⇒ .bc

- llvm-dis: .bc ⇒ .ll

G53CMP: Lecture 19 – p.11/24

LLVM Modularity (1)

• Each LLVM pass, such as optimizations, is a
library component transforming LLVM IR; e.g.

- constant folding

- loop unrolling

- motion of loop-invariant code

- inliner

• Passes are written to be as independent as
possible; any dependences are declared
explicitly.

G53CMP: Lecture 19 – p.12/24

LLVM Modularity (2)

• A pass manager can run the available
passes in a suitable order, subject only to
declared constraints.

• Any particular application only needs to
include exactly those passes that are
relevant, making for small footprint.

G53CMP: Lecture 19 – p.13/24

SSA Form (1)

Static Single Assignment (SSA):
• SSA form is a property of intermediate

representations where:

- each variable is assigned exactly once

- every variable is defined (assigned) before used.

• Developed at IBM in the 1980s by researchers
Ron Cytron, Jeanne Ferrante, Barry K.
Rosen, Mark N. Wegman, Kenneth Zadeck.

• Compilers using SSA include: GCC, LLVM,
Oracle’s HotSpot JVM, Android’s Dalvik and
Runtime.

G53CMP: Lecture 19 – p.14/24

SSA Form (2)

• SSA form can for some purposes be seen as
a purely functional representation.

• Indeed, there is a formal correspondence
between SSA form and purely functional
representations, notably Continuation
Passing Style (CPS).

• As a result, many compiler optimizations are
simplified and improved.

G53CMP: Lecture 19 – p.15/24

Static Single Assignment (SSA) Form (3)

Conversion to SSA form by splitting each
variable into versions. For example:

y := 1; y := 2; x := y

In SSA form:

y1 := 1; y2 := 2; x1 := y2

Note that it now is manifest (no flow analysis
needed) where the value assigned to x comes
from and that the first assignment to y is dead
code.

G53CMP: Lecture 19 – p.16/24

What about Control Flow Joins? (1)

The obvious question is how to handle joins in
the control flow.

Consider:

Before SSA conversion:

x := ...;

if x > 0 then

x := 1

else

x := 2;

y := x;

SSA form:

x1 := ...;

if x1 > 0 then

x2 := 1

else

x3 := 2;

y1 := x???;

G53CMP: Lecture 19 – p.17/24

What about Control Flow Joins (2)

Or consider:

Before SSA conversion:

x := ...;

while x < 100 do

x := x * 2;

y := x

SSA form:

x1 := ...;

while x??? < 100 do

x2 := x??? * 2;

y1 := x???

G53CMP: Lecture 19 – p.18/24

φ-Functions (1)

A φ-function (originally “phoney function”) selects
and returns exactly one of its arguments.
Assume first it always picks the “right” argument.
Then we can solve our dilemma as follows:

x1 := ...;

if x1 > 0 then

x2 := 1

else

x3 := 2;

x4 := φ(x2,x3);

y1 := x4

G53CMP: Lecture 19 – p.19/24

φ-Functions (2)

And:

x1 := ...;

while (x2 := φ1(x1,x3), x2 < 100) do

x3 := x2 * 2;

y1 := x2

Also clearly in SSA form!

G53CMP: Lecture 19 – p.20/24

φ-Functions (3)

• A φ-function selects an argument according to
the dynamically preceding basic block: from
where did the control reach the φ-function?

• “Translating out of” SSA is essentially a
matter of joining up the different versions of a
variable.

• A φ-function translates into no code if the
arguments and results can be stored in the
same place (register).

• Otherwise extra copy instructions (assignments)
are needed to translate out of SSA.

G53CMP: Lecture 19 – p.21/24

Where Do φ-Functions Go? (1)

φ-functions are placed by constructing and
analysing the control flow graph:

• A node A strictly dominates a different node
B iff all paths to B go through A.

• A node A dominates B iff A strictly
dominates B or A = B.

• A node B is in the dominance frontier of a node
A iff A does not strictly dominate B, but does
dominate an immediate predecessor of B.

φ-functions are placed on the dominance frontier.

G53CMP: Lecture 19 – p.22/24

Where Do φ-Functions Go? (2)

Observation: we only need φ-functions for live
variables.

• Pruned SSA: Use live-variable information to
decide whether a particular φ-function is
needed. Expensive computation.

• Semi-pruned SSA: Identify variables that are
never live on entry to a block and omit
φ-functions for such “block-local” variables.
Cheaper to compute.

G53CMP: Lecture 19 – p.23/24

LLVM Demo

We will translate the following C-code into LLVM
IR using the Clang compiler, study the result and
run some optimizations on it.

int i, m, n;

int main(int argc, char* argv[]) {

sscanf(argv[1], "%d", &m);

for (i = 0; i < m; i++) {

n += i;

}

printf("n = %d\n", n);

return 0;

}
G53CMP: Lecture 19 – p.24/24

	Result SEM G53CMP 2018/19 (1)
	Result SEM G53CMP 2018/19 (2)
	Result SEM G53CMP 2018/19 (3)
	Result SEM G53CMP 2018/19 (4)
	{LL}VM (1)
	{LL}VM (2)
	Motivations for LLVM (1)
	{LL}VM IR (1)
	{LL}VM IR (2)
	{LL}VM IR (3)
	{LL}VM Modularity (1)
	{LL}VM Modularity (2)
	{SS}A Form (1)
	{SS}A Form (2)
	Static Single Assignment (SSA)
Form (3)
	What about Control Flow Joins? (1)
	What about Control Flow Joins (2)
	$phi $-Functions (1)
	$phi $-Functions (2)
	$phi $-Functions (3)
	Where Do $phi $-Functions Go? (1)
	Where Do $phi $-Functions Go? (2)
	{LL}VM Demo

