This Lecture

Some Haskell facilities that are particularly helpful for large-scale programming:

- The Haskell module system
- Haskell overloading
- Labelled fields (Haskell’s “record” system)

 Modules in Haskell (1)

- A Haskell program consists of a set of modules.
- A module contains definitions:
 - functions
 - types
 - type classes
- The top module is called Main:

 module Main where
 main = putStrLn "Hello World!"

 Modules in Haskell (2)

By default, only entities defined within a module are in scope. But a module can import other modules, bringing their definitions into scope:

 module A where
 f1 x = x + x
 f2 x = x + 3
 f3 x = 7

 module B where
 import A
 g x = f1 x * f2 x + f3 x
The Prelude

There is one special module called the *Prelude*. It is *imported implicitly* into every module and contains standard definitions, e.g.:

- Basic types (`Int, Bool, tuples, [], Maybe, ...`)
- Basic arithmetic operations (`+`, `*`, `...`)
- Basic tuple and list operations (`fst, snd, head, tail, take, map, filter, length, zip, unzip, ...`)

(It is possible to explicitly exclude (parts of) the Prelude if necessary.)

Qualified Names (1)

The **fully qualified name** of an entity `x` defined in module `M` is `M.x`.

\[g \ x = A.f1 \ x \ * A.f2 \ x + f3 \ x \]

Note! Different from function composition!!!

Always write function composition with spaces:

\[f \ . \ g \]

The module name space is **hierarchical**, with names of the form `M1.M2....Mn`. This allows related modules to be grouped together.

Qualified Names (2)

Fully qualified names can be used to resolve name clashes. Consider:

```haskell
module A where
  module C where
    import A
    f x = 2 * x
module B where
  g x = A.f x + B.f x
```

Two *different functions* with the *same unqualified name* `f` in scope in `C`. Need to write `A.f` or `B.f` to disambiguate.

Import Variations

Another way to resolve name clashes is to be more precise about imports:

```haskell
import A (f1, f2) Only f1 and f2
import A hiding (f1, f2) Everything but f1 and f2
import qualified A All names from A imported fully qualified only.
```

Can be combined in all possible ways; e.g.:

```haskell
import qualified A hiding (f1, f2)
```
Export Lists

It is also possible to be precise about what is exported:

```haskell
module A (f1, f2) where ...
```

Various abbreviations possible; e.g.:

- A type constructor along with all its value constructors
- Everything imported from a specific module

Haskell Overloading (1)

What is the type of `(==)`?

E.g. the following both work:

```haskell
1 == 2
'a' == 'b'
```

I.e., `(==)` can be used to compare both numbers and characters.

Maybe `(==) :: a -> a -> Bool`?

No!!! Cannot work uniformly for arbitrary types!

Haskell Overloading (2)

A function like the identity function

```haskell
id :: a -> a id x = x
```

is **polymorphic** precisely because it works uniformly for all types: there is no need to “inspect” the argument.

In contrast, to compare two “things” for equality, they very much have to be inspected, and an appropriate method of comparison needs to be used.

Haskell Overloading (3)

Moreover, some types do not in general admit a decidable equality. E.g. functions (when domain infinite).

Similar remarks apply to many other types. E.g.:

- We may want to be able to add numbers of any kind
- But to add properly, we must understand what we are adding
- Not every type admits addition
Haskell Overloading (4)

Idea:

- Introduce the notion of a **type class**: a set of types that support certain related operations.
- **Constrain** those operations to **only** work for types belonging to the corresponding class.
- Allow a type to be **made an instance of** (added to) a type class by providing **type-specific implementations** of the operations of the class.

The Type Class **Eq**

```haskell
class Eq a where
  (==) :: a -> a -> Bool
```

(==) is not a function, but a **method** of the **type class** Eq. It's type signature is:

```haskell
(==) :: Eq a => a -> a -> Bool
```

Eq a is a **class constraint**. It says that the equality method works for any type belonging to the type class Eq.

Instances of **Eq** (1)

Various types can be made instances of a type class like Eq by providing implementations of the class methods for the type in question:

```haskell
instance Eq Int where
  x == y = primEqInt x y

instance Eq Char where
  x == y = primEqChar x y
```

Instances of **Eq** (2)

Suppose we have a data type:

```haskell
data Answer = Yes | No | Unknown
```

We can make **Answer** an instance of Eq as follows:

```haskell
instance Eq Answer where
  Yes == Yes = True
  No == No = True
  Unknown == Unknown = True
  _ == _ = False
```
Instances of \(\text{Eq} \) (3)

Consider:

\[
data \ \text{Tree} \ a = \ \text{Leaf} \ a \\
| \ \text{Node} \ (\text{Tree} \ a) \ (\text{Tree} \ a)
\]

Can \(\text{Tree} \) be made an instance of \(\text{Eq} \)?

Instances of \(\text{Eq} \) (4)

Yes, for any type \(a \) that is already an instance of \(\text{Eq} \):

\[
\text{instance} \ (\text{Eq} \ a) \Rightarrow \text{Eq} \ (\text{Tree} \ a) \text{ where}
\text{Leaf} \ a_1 = \text{Leaf} \ a_2 \Rightarrow a_1 = a_2
\text{Node} \ t_{1l} \ t_{1r} = \text{Node} \ t_{2l} \ t_{2r} \Rightarrow t_{1l} = t_{2l} \wedge t_{1r} = t_{2r}
_ = _ \Rightarrow \text{False}
\]

Derived Instances

Instance declarations are often obvious and mechanical. Thus, for certain \textit{built-in} classes (notably \(\text{Eq} \), \(\text{Ord} \), \(\text{Show} \)), Haskell provides a way to \textit{automatically derive} instances, as long as

- the data type is sufficiently simple
- we are happy with the standard definitions

Thus, we can do:

\[
data \ \text{Tree} \ a = \ \text{Leaf} \ a \\
| \ \text{Node} \ (\text{Tree} \ a) \ (\text{Tree} \ a)
\text{deriving} \ \text{Eq}
\]

Class Hierarchy

Type classes form a hierarchy. E.g.:

\[
\text{class} \ \text{Eq} \ a \Rightarrow \text{Ord} \ a \text{ where}
(\leq) :: a \rightarrow a \rightarrow \text{Bool}
\ldots
\]

\text{Eq} \ is \ a \ superclass \ of \ \text{Ord}; \ i.e., \ any \ type \ in \ \text{Ord}
\text{must \ also \ be \ in} \ \text{Eq}.
Haskell vs. OO Overloading (1)

A method, or overloaded function, may thus be understood as a family of functions where the right one is chosen depending on the types.

A bit like OO languages like Java. But the underlying mechanism is quite different and much more general. Consider `read`:

\[
\text{read} :: \text{(Read a) => String} \rightarrow a
\]

Note: overloaded on the **result** type! A method that converts from a string to any other type in class `Read`!

Implementation (1)

The class constraints represent extra implicit arguments that are filled in by the compiler. These arguments are (roughly) the functions to use.

Thus, internally `(==)` is a higher order function with three arguments:

\[
(==) \text{eqF} x y = \text{eqF} x y
\]

Haskell vs. OO Overloading (2)

```haskell
> let xs = [1,2,3] :: [Int]
> let ys = [1,2,3] :: [Double]
> xs [1,2,3]
> ys [1.0,2.0,3.0]
> (read "42" : xs) [42,1,2,3]
> (read "42" : ys) [42.0,1.0,2.0,3.0]
> read "'a'" :: Char
  'a'
```

Implementation (2)

An expression like

```
1 == 2
```

is essentially translated into

```
(==) \text{primEqInt} 1 2
```
Some Standard Haskell Classes (1)

class Eq a where
 (==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where
 compare :: a -> a -> Ordering
 (<=), (>=), (>), ($) :: a -> a -> Bool
 max, min :: a -> a -> a

class Show a where
 show :: a -> String

Some Standard Haskell Classes (2)

class (Eq a, Show a) => Num a where
 (+), (-), (*) :: a -> a -> a
 negate :: a -> abs, signum :: a -> a
 fromInteger :: Integer -> a

Quiz: What is the type of a numeric literal like 42?
42 :: Int? Why?

Labelled Fields (1)

Suppose we need to represent data about people:
 - Name
 - Age
 - Phone number
 - Post code

One possibility: use a tuple:

 type Person = (String, Int, String, String)
 henrik = ("Henrik", 25, "8466506", "NG92YZ")

Labelled Fields (2)

Problems? Well, the type does not say much about the purpose of the fields! Easy to make mistakes; e.g.:

 getPhoneNumber :: Person -> String
 getPhoneNumber (_, _, _, pn) = pn

or

 henrik = ("Henrik", 25, "NG92YZ", "8466506")
Can we do better? Yes, we can introduce a new type with **named fields**:

data Person = Person {
 name :: String,
 age :: Int,
 phone :: String,
 postcode :: String
}
deriving (Eq, Show)

Construction

We can construct data without having to remember the field order:

 henrik = Person {
 age = 25,
 name = "Henrik",
 postcode = "NG92YZ",
 phone = "8466506"
 }

Update (1)

Fields can be “updated”, creating new values from old:

 > henrik { phone = "1234567" }
 Person {name = "Henrik", age = 25,
 phone = "1234567",
 postcode = "NG92YZ"}

Note: This is a **functional** “update”! The old value is left intact.
Update (2)

How does “update” work?

henrik \{ \text{phone} = "1234567" \}

gets translated to something like this:

\[
f (\text{Person } a_1 \ a_2 \ _\ a_4) = \\
\quad \text{Person } a_1 \ a_2 \ "1234567" \ a_4
\]

Pattern matching

Field names can be used in pattern matching, allowing us to forget about the field order and pick \textit{only} fields of interest.

\[
\text{phoneAge} \ (\text{Person } \{\text{phone} = p, \ \text{age} = a\}) = \\
\quad p \ ++ \ "\ : \ " \ ++ \ \text{show} \ a
\]

This facilitates adding new fields to a type as most of the pattern matching code usually can be left unchanged.

Selection

We automatically get a \textit{selector function} for each field:

\[
\begin{align*}
\text{name} & : \text{Person} \rightarrow \text{String} \\
\text{age} & : \text{Person} \rightarrow \text{Int} \\
\text{phone} & : \text{Person} \rightarrow \text{String} \\
\text{postcode} & : \text{Person} \rightarrow \text{String}
\end{align*}
\]

For example:

\[
\begin{align*}
> \text{name} \ \text{henrik} \\
\quad "\text{Henrik}"
\quad > \text{phone} \ \text{henrik} \\
\quad "\text{8466506}"
\end{align*}
\]

Multiple Value Constructors (1)

\[
data \text{Being} = \text{Person} \{ \\
\quad \text{name} : \text{String}, \\
\quad \text{age} : \text{Int}, \\
\quad \text{phone} : \text{String}, \\
\quad \text{postcode} : \text{String}
\}
\]

\[
| \quad \text{Alien} \{ \\
\quad \text{name} : \text{String}, \\
\quad \text{age} : \text{Int}, \\
\quad \text{homeworld} : \text{String}
\}
\]

\[
deriving (\text{Eq, Show})
\]
Multiple Value Constructors (2)

It is OK to have the same field labels for different constructors as long as their types agree.

Distinct Field Labels for Distinct Types

It is not possible to have the same field names for different types! The following does not work:

```haskell
data X = MkX { field1 :: Int }

data Y = MkY { field1 :: Int, field2 :: Int }
```

One work-around: use a prefix convention:

```haskell
data X = MkX { xField1 :: Int }

data Y = MkY { yField1 :: Int, yField2 :: Int }
```

Advantages of Labelled Fields

- Makes intent clearer.
- Allows construction and pattern matching without having to remember the field order.
- Provides a convenient update notation.
- Allows to focus on specific fields of interest when pattern matching.
- Addition or removal of fields only affects function definitions where these fields really are used.