G53CMP-E1

The University of Nottingham
SCHOOL OF COMPUTER SCIENCE
A LEVEL 3 MODULE, AUTUMN SEMESTER. 2016-2017

COMPILERS

ANSWERS

Time allowed TWO hours

Candidates may complete the front cover of their answer book and sign
their desk card but must NOT write anything else until the start of the
examaination period is announced.

Answer ALL THREFE questions
No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first
language is not English may use a standard translation dictionary to
translate between that language and English provided that neither language
is the subject of this examination. Subject-specific translation directories
are not permitted.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

Note: ANSWERS

GH3CMP-E1 Turn Over

2 G53CMP-E1

Knowledge classification: Following School recommendation, the (sub)questions
have been classified as follows, using a subset of Bloom’s Taxonomy:

K: Knowledge
C: Comprehension
A: Application

Note that some questions are closely related to the coursework. This is
intentional and as advertised to the students; the coursework is a central
aspect of the module and as such partly examined under exam conditions.

Question 1

(a) Consider the following context-free grammar (CFG):

S — aABe
A — bcA|c
B — d

S, A, and B are nonterminal symbols, S is the start symbol, and a, b,
¢, d, and e are terminal symbols.

Explain how a bottom-up (LR) parser would parse the string
abcbcbecede

according to this grammar by reducing it step by step to the start
symbol. Also state what the handle is for each step. (10)

Answer: [C] A bottom-up parser traces out a right-most derivation in
reverse. It would reduce the word abcbecde as follows:

abcbebecde <=

™rm

abcbcbcAde <

™rm

reduce by A — ¢)
reduce by A — bcA)

(
(
abcbcAde < (reduce by A — bcA)
abcAde 2 (reduce by A — bcA)
aAde 2 (reduce by B — d)
aABe %’szn (reduce by S — aABe)
S

The handle has been underlined in each step.

G53CMP-E1

3 G53CMP-E1

(b) The DFA below recognizes the viable prefixes for the above CFG.

Show how an LR(0) shift-reduce parser parses the string abcbebeede
by completing the following table (copy it to your answer book; do not
write on the examination paper):

State | Stack | Input Move
10 € abebebeede | Shift
11 a bebebeede Shift

S € Done

(10)

GH3CMP-E1 Turn Over

4 G53CMP-E1

Answer: [C]

State | Stack Input Move
10 | € abcbebeede | Shift
11 a bcbebeede | Shift
12 | ab cbebeede Shift
13 | abc bebeede Shift
12 | abcb cbeede Shift
13 | abcbe beede Shift
12 | abcbedb cede Shift
13 | abcbebe cde Shift
15 | abcbebee | de Reduce by A — ¢
L) | abcbcbcA | de Reduce by A — bcA
1 | abcbcA de Reduce by A — bcA
L, | abcA de Reduce by A — bcA
16 | aA de Shift
I7 | aAd e Reduce by B — d
I8 | aAB e Shift
19 | aABe € Reduce by S — aABe

S € Done

(c) Explain shift/reduce and reduce/reduce conflicts in the context of LR
parsing. (5)
Answer: [K] Shift/reduce and reduce/reduce conflicts occur as a result
of ambiguities in the grammar. In a shift/reduce conflict, a state in the
DFA contains both complete and incomplete items. It is thus not clear
whether to shift or reduce. In a reduce/reduce conflict, a state in the
DFA contains more than one complete item. It is thus not clear by
what production to reduce.

G5H3CMP-E1

5 G53CMP-E1

Question 2
The following is the grammar for a very simple expression language:

exp — expand exp | exp or exp | not exp | tt | £f | (exp)

Here, exp is a non-terminal and and, or, not, tt, £f, (, and) are all termi-
nals, with and denoting logical conjunction, or denoting logical disjunction,
not denoting logical negation, tt and f£f being literals denoting the truth
values true and false respectively, and parentheses used for grouping as usual.

The following is the central part of a Happy parser specification for this
grammar. We wish to implement an interpreter that directly evaluates a
parsed expression to a Boolean. The type of the semantic value for the non-
terminal exp is thus Bool:

exp :: { Bool }

exp : exp and exp {[1]}
| exp or exp {Z}
| not exp {13]|}
| tt { 4]}
| £ (5]
| ;(; exp 7)7 {i}

The grammar is ambiguous, but we assume that Happy’s features for spec-
ifying operator precedence and associativity are used to disambiguate as
necessary. The semantic actions for evaluating an expression have been left
out, indicated by boxed numbers (like)

(a) Complete the fragment above by providing suitable semantic actions
for evaluating the various forms of expressions. (6)

Answer: [A]

= $1 && $3
= $1 || $3
not $2
True

False

$2

[]ee o] =]

Marking: 1 marks for each semantic action. (6 x 1 =6)

(b) We now wish to extend the language with a notion of let-bound vari-
ables. The Happy grammar is thus extended as follows:

| ident { }

| let ident ’=’ exp in exp { E }

GH3CMP-E1 Turn Over

6 G53CMP-E1

Here, ident, let, in, and = are all new terminals. For simplicity, the
semantic value of ident is a string; i.e., the name of the identifier.

Explain, in English, how to restructure the interpreter to handle let-
bound variables. In particular, what should the type of the semantic
value of the non-terminal exp be now? 9)

Answer: [K,A] The key difficulty is that the value of a variable needs
to be communicated from the site of its definition to each use site.
As the basic flow of information is bottom-up, we need to additionally
arrange for a way to also propagate information top-down. This can
be achieved by turning the semantic value into a function as the func-
tion argument effectively allows information to flow downwards. In this
case, we introduce an environment that maps identifiers (strings) to
the value of the named variable in question. FE.g. type Env = String
-> Bool. (Alternatively, we could use some kind of lookup table, like
a Map or a list of pairs of type (String, Bool)). The type of the
semantic value of expressions then becomes Env -> Bool.

(c¢) Implement an interpreter for the extended expression language by pro-
viding suitable semantic actions for all productions () following

the idea you described in (b). (10)

Answer: [A]

I \env -> $1 env && $3 env

z = \env -> $1 env || $3 env

E = \env -> not ($2 env)

z = _ -> True

E = _ -> False

E = \env -> $2 env

z = \env -> env $1

E \env -> let v = $4 env in $6 (\i -> if i == $2 then v else env i)

Marking: 4 marks for actions @ collectively, 2 marks for action
, 4 marks for action . 4+2+4=10)

GbH3CMP-E1

7 G53CMP-E1

Question 3
This questions concerns types and scope: both how they are captured for-
mally in a type system, and how they might be implemented.

(a) Consider the following expression language:

e — expressions:
| n natural numbers, n € N
| variables, x € Name
| e=e equality test
| if etheneelsee conditional

where Name is the set of variable names. The types are given by the
following grammar:

t — types:
| Nat natural numbers
| Bool Booleans

The ternary relation I' - e : t says that expression e has type ¢ in the
typing context I'. It is defined by the following typing rules:

I'n:Nat (T-NAT)
z:tel
ot (T-VAR)

I'Fe;:Nat I'Fey:Nat
I'F e =e9:Bool (T_EQ)

I'Fe;:Bool T'keg:t T'heg:t
I'Fif e; theneg elsees : t

(T-COND)

A typing context, I' in the rules above, is a comma-separated sequence
of variable-name and type pairs, such as

x : Nat, y : Bool, z: Nat

or empty, denoted (). Typing contexts are extended on the right, e.g.
I', z : Nat, the membership predicate is denoted by €, and lookup is
from right to left, ensuring recent bindings hide earlier ones.

(i) Use the typing rules given above to formally prove that the ex-
pression
if x=5thenaelseb

GH3CMP-E1 Turn Over

8 G53CMP-E1

has type Bool in the typing context

I'y = a:Bool, b:Bool, x: Nat

The proof should be given as a proof tree. (5)
Answer:
a:Bool eIy b:Bool €Iy
bel ——— — T-VAR ————— T-VAR
I'' Fx=5:Bool cow I't Ha:Bool I't Fb:Bool

T-COND

I''Fif x=5thenaelseb: Bool

x:Nat € I'y
——— T-VAR ————— T-NAT
't Fx:Nat I't F5:Nat

T-E
I't Fx=5:Bool Q

(ii) The expression language defined above is to be extended with
let-bound variables; definition of named, possibly recursive, func-
tions; and function application as follows:

e — ETPTESSIONS:
| let varz = eine variable definition
| let fun f(z:t):t = eine function definition
| ele) function application

t — types:
| t—t function (arrow) type

Here, f is the syntactic category of function names (f € Name).
Variable definition is not recursive: the let-bound variable is only
in scope in the body of the let-expression, not in its defining
expression. In contrast, the named function being defined is in
scope, along with the named formal argument, in the expression
defining the function, thus allowing for recursive functions.

For example, if we assume that the expression language has been
extended with basic arithmetic operations as well, the following
is a definition of the factorial function:

let fun fac(n : Nat) : Nat =
if n = 0 then 1 else n * fac(n - 1)
in

Provide a typing rule for each of the new expression constructs,
in the same style as the existing rules, reflecting the standard no-
tions of typed let-expressions and function application augmented
by the additional requirements set forth in the text above. (8)

G53CMP-E1

9 G53CMP-E1

Answer:

I'te :t1y T, x:t1Fey:ty

IT'Flet varz = e; iney : to (T-LETVAR)
F,f:t11—>t12,$:t11|_61:t12 F,f:tll—)t12|—@2:t2

I'F1let fun f(z:t11):t12 = er ineg: iy (T-LETFUN)

Fhetto—=t; T'Fex:ty (T-APP)

I'Fei(e): b

G53CMP-El Turn Over

10 G53CMP-E1

(b) Consider the following code skeleton (note: nested procedures):

var a, b, c: Integer
proc P
var x, y, z: Integer
proc Q
var u, v: Bool
proc R
var w: Bool
begin ... QO ... end
begin ... R() ... end
begin ... QO ... end
begin ... P() ... end

The variables a, b, and ¢ are global. The variables x, y, and z are local
to procedure P, as is procedure Q, which in turn has two local variables,
u and v, and a local procedure R. The latter has one local variable, w.
The notation P(), R(Q), etc. signifies a call to the named procedure.
Thus main calls P, P calls Q, Q calls R, and R calls Q (recursively).

Assume stack-based memory allocation with dynamic and static links.

(i) Show the layout of the activation records on the stack after the
main program has called procedure P. Explain how global and
local variables are accessed from P. (3)

(ii) Show the layout of the activation records on the stack after the
call sequence: P, Q, R, Q, R (that is, after main has called P, which
in turn has called Q, etc.). Explain how global variables, P’s vari-
ables, Q’s variables, and R’s own local variables are accessed from
the last activation of R. 9)

Answer:

(i) Activation record layout (stack grows downwards):

Global variables SB — [a

b

c

Frame of P LB — | static ink ———
dynamic link —
return address
x

Y

z

ST —
SB is Stack Base, LB is Local Base (or Frame Pointer), ST is
Stack Top. The activation record (or frame) of the currently ac-
tive procedure/function is the one between LB and ST. The solid
arrow from the current activation record represents the dynamic
link, i.e. it refers to the activation record of the caller and is thus

G53CMP-E1

11 G53CMP-E1

equal to the previous value of LB. The dashed arrow represents
the static link. Global variables are accessed relative to SB. Vari-
ables local to P are accessed relative to LB. In both cases, the
offsets are statically known.

(ii) Activation record layout (stack grows downwards):

Global variables SB — [a

b

c

Frame of P static link ———
dynamic link —
return address
x

Y

z
Frame of Q (1) static link —= |3
dynamic link —
return address
u

v

Frame of R (1) static link ==~
dynamic link —
return address
W

Frame of Q (2) static link ———
dynamic link —
return address
u

v

Frame of R (2) LB — | stalic link ———
dynamic link —
return address
W

ST —

SB is Stack Base, LB is Local Base (or Frame Pointer), ST
is Stack Top. The solid arrows represent the dynamic link, the
dashed ones is the static link. Global variables are accessed rela-
tive to SB. Variables local to R are are accessed relative to LB.
Hence the second instance of these variables are being accessed
(corresponding to the currently active procedure). As @ directly
encloses R, following the static link from R’s activation record
takes us to the correct activation record, the most recent activa-
tion of Q, and the variables can then be found at statically known
offsets within this activation record. As P is two scope levels out,
we have to follow two static links: first the static link from R’s
activation record to get to the activation record for the immedi-
ately enclosing scope, and then the static link from that record to
get to the record two levels out. The variables are again found at
statically known offsets within this record.

GbH3CMP-E1 End

