
G53CMP-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE

A LEVEL 3 MODULE, AUTUMN SEMESTER 2017–2018

COMPILERS

Time allowed TWO hours

Candidates may complete the front cover of their answer book and sign their
desk card but must NOT write anything else until the start of the examination

period is announced.

Answer ALL THREE questions

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first language is
not English may use a standard translation dictionary to translate between

that language and English provided that neither language is the subject of this
examination. Subject-specific translation directories are not permitted.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

DO NOT turn examination paper over until instructed to do so

ADDITIONAL MATERIAL: Appendix A, Appendix B

INFORMATION FOR INVIGILATORS: none

G53CMP-E1 Turn Over

2 G53CMP-E1

Question 1

(a) Explain and give examples of the following kinds of compile-time error:

• lexical error

• syntax error (context-free)

• contextual error

(6)

(b) Draw the parse (or derivation) tree for the following MiniTriangle frag-
ment. The relevant grammar is given in Appendix A. Start from the pro-
duction for “Command”.

if x[i] < 100 then

putint(k)

else

i := (-i) - 1

(9)

G53CMP-E1

3 G53CMP-E1

(c) Consider the following context-free grammar (CFG):

S → AB | BC

A → Aa | c

B → bbB | d

C → c

S, A, B, and C are nonterminal symbols, S is the start symbol, and a,
b, c, and d are terminal symbols.

The DFA below recognizes the viable prefixes for this CFG:

S → ·AB

S → ·BC

A → ·Aa

A → ·c

B → ·bbB

B → ·d

I0

S → A ·B

A → A · a

B → ·bbB

B → ·d

I1
S → AB ·

I2

A → Aa ·

I3

B → b · bB

I4

B → bb ·B

B → ·bbB

B → ·d

I5

B → bbB ·

I6

B → d ·

I7

S → B · C

C → ·c

I8 S → BC ·

I9

C → c ·

I10

A → c ·

I11

A

b

d

B

c

B

a

b

d

b b

d

B

C

c

Show how an LR(0) shift-reduce parser parses the string caabbbbd by
completing the following table (copy it to your answer book; do not write
on the examination paper):

State Stack Input Move

I0 ǫ caabbbbd Shift
I11 c aabbbbd Reduce by A→ c
...

...
...

...
S ǫ Done

(10)

G53CMP-E1 Turn Over

4 G53CMP-E1

Question 2
Consider the language given by the following abstract syntax:

C → Commands:
skip Do nothing

| C ; C Sequencing
| x := E Assignment
| if E then C else C Conditional command
| while E do C while-loop

E → Expressions:
n Literal integer

| x Variable
| E + E Addition
| E = E Comparison

For this question, you will develop code generation functions for the above
language, targeting the Triangle Abstract Machine (TAM). See appendix B
for a specification of the TAM instructions. Assume conventional (imperative)
semantics for the above language constructs, along with the following:

• x is the syntactic category of variable identifiers, ranging over the 26
names a, b, . . . , z. They refer to 26 global variables stored at SB + 0 (a)
to SB + 25 (z).

• The while-loop has the following semantics: the loop expression E is
evaluated; if the result is true, the loop body C is executed next and
then the process is repeated from the evaluation of the loop expression;
otherwise execution continues after the loop.

The code generation functions should be specified through code templates
in the style used in the lectures. Assume a function addr (x) that returns the
address (of the form [SB + d]) for a variable x. Further, you will have to
consider generation of fresh labels. Assume a monadic-style operation l ← fresh

to bind a variable l to a distinct label that then can be used in jumps and as
jump targets. For example:

execute [[if E then C1 else C2]] = l1 ← fresh

. . .
JUMP l1
. . .

l1: . . .

(a) Write a code generation function evaluate that generates TAM code for
evaluating an expression. The first case should start like:

evaluate [[n]] = . . .

(4)

G53CMP-E1

5 G53CMP-E1

(b) Write a code generation function execute that generates TAM code for ex-
ecuting commands. It should handle the five forms of commands specified
by the abstract syntax above. (12)

(c) Now assume we wish to extend the language with the commands break
and continue :

C → Commands:
| . . .
| break Terminate innermost loop
| continue Continue with next loop iteration

The semantics is that break will terminate the innermost loop, with
execution continuing immediately after the loop, while continue will
skip whatever remains of the loop body, and continue execution directly
with the next loop iteration.

Modify and extend execute to generate code for the extended language.
Note that execute will need (an) extra argument(s) for contextual infor-
mation to keep track of the current innermost loop. You may assume that
using break or continue outside any loop is a static error. Thus your
code generator does not need to handle that case. Your answer should
include the modified execute cases for if and while, as well as the cases
for the two new commands. (9)

G53CMP-E1 Turn Over

6 G53CMP-E1

Question 3
This question concerns code improvement (optimisation) and internal represen-
tations that facilitate analysis and code improvement.

(a) Explain the code improvement technique common subexpression elimina-
tion, illustrating with an example. Also discuss when the technique cannot
be applied, again illustrating with an example. (6)

(b) Show how the following program fragment involving a C-like for-loop
might be transformed by means of loop unrolling in a situation where the
loop bound n is not statically known:

b[0] := a[0];

for (i := 1; i < n; i++) do

b[i] := b[i-1] + a[i];

Also discuss the potential advantages and disadvantages of this transfor-
mation. (9)

(c) Transform the following code fragment into static single assignment (SSA)
form:

a := 0;

b := 1;

i := 2;

while i < n do begin

c := a + b;

a := b;

b := c;

i := i + 1

end

(10)

G53CMP-E1

7 G53CMP-E1

Appendix A: MiniTriangle Grammars
This appendix contains the grammars for the MiniTriangle lexical, concrete, and
abstract syntax. The following typographical conventions are used to distinguish
between terminals and non-terminals:

• nonterminals are written like this

• terminals are written like this

• terminals with variable spelling and special symbols are written like this

MiniTriangle Lexical Syntax:

Program → (Token | Separator)∗

Token → Keyword | Identifier | IntegerLiteral | Operator

| , | ; | : | := | = | (|) | [|] | eot

Keyword → begin | const | do | else | end | fun | if | in
| let | out | proc | then | var | while

Identifier → Letter | Identifier Letter | Identifier Digit

except Keyword

IntegerLiteral → Digit | IntegerLiteral Digit

Operator → ^ | * | / | + | - | < | <= | == | != | >= | > | && | || | !

Letter → A | B | . . . | Z | a | b | . . . | z

Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Separator → Comment | space | eol

Comment → // (any character except eol)∗ eol

G53CMP-E1 Turn Over

8 G53CMP-E1

MiniTriangle Concrete Syntax:

Program → Command

Commands → Command

| Command ; Commands

Command → VarExpression := Expression

| VarExpression (Expressions)

| if Expression then Command

else Command

| while Expression do Command

| let Declarations in Command

| begin Commands end

Expressions → ǫ
| Expressions1

Expressions1 → Expression

| Expression , Expressions1

Expression → PrimaryExpression

| Expression BinaryOperator Expression

PrimaryExpression → IntegerLiteral

| VarExpression

| UnaryOperator PrimaryExpression

| VarExpression (Expressions)

| [Expressions]

| (Expression)

VarExpression → Identifier

| VarExpression [Expression]

BinaryOperator → ^ | * | / | + | - | < | <= | == | != | >= | > | && | ||

UnaryOperator → - | !

G53CMP-E1

9 G53CMP-E1

Declarations → Declaration

| Declaration ; Declarations

Declaration → const Identifier : TypeDenoter = Expression

| var Identifier : TypeDenoter

| var Identifier : TypeDenoter := Expression

| fun Identifier (ArgDecls) : TypeDenoter = Expression

| proc Identifier (ArgDecls) Command

ArgDecls → ǫ
| ArgDecls1

ArgDecls1 → ArgDecl

| ArgDecl , ArgDecls1

ArgDecl → Identifier : TypeDenoter

| in Identifier : TypeDenoter

| out Identifier : TypeDenoter

| var Identifier : TypeDenoter

TypeDenoter → Identifier

| TypeDenoter [IntegerLiteral]

Note that the productions for Expression make the grammar as stated above
ambiguous. Operator precedence and associativity for the binary operators as
defined in the following table are used to disambiguate:

Operator Precedence Associativity

^ 1 right
* / 2 left
+ - 3 left

< <= == != >= > 4 non
&& 5 left
|| 6 left

A precedence level of 1 means the highest precedence, 2 means second highest,
and so on.

G53CMP-E1 Turn Over

10 G53CMP-E1

MiniTriangle Abstract Syntax: Name = Identifier ∪Operator .

Program → Command Program

Command → Expression := Expression CmdAssign
| Expression (Expression∗) CmdCall
| begin Command ∗ end CmdSeq
| if Expression then Command CmdIf

else Command

| while Expression do Command CmdWhile
| let Declaration∗ in Command CmdLet

Expression → IntegerLiteral ExpLitInt

| Name ExpVar
| Expression (Expression∗) ExpApp
| [Expression∗] ExpAry
| Expression [Expression] ExpIx

Declaration → const Name : TypeDenoter DeclConst
= Expression

| var Name : TypeDenoter DeclVar
(:= Expression | ǫ)

| fun Name (ArgDecl∗) DeclFun
: TypeDenoter = Expression

| proc Name (ArgDecl∗) Command DeclProc

ArgDecl → ArgMode Name : TypeDenoter ArgDecl

ArgMode → ǫ ByValue
| in ByRefIn
| out ByRefOut
| var ByRefVar

TypeDenoter → Name TDBaseType
→ TypeDenoter [IntegerLiteral] TDArray

G53CMP-E1

11 G53CMP-E1

Appendix B: Triangle Abstract Machine (TAM) Instructions

Meta variable Meaning

a Address: one of the forms specified by table below
when part of an instruction, specific stack address
when on the stack

b Boolean value (false = 0 or true = 1)

ca Code address; address to routine in the code seg-
ment

d Displacement; i.e., offset w.r.t. address in register
or on the stack

l Label name

m, n, p Integer

x, y, z Any kind of stack data

xn Vector of n items, n ≥ 0, here any kind

Address form Description

[SB + d] Address given by contents of register SB
[SB - d] (Stack Base) +/− displacement d

[LB + d] Address given by contents of register LB
[LB - d] (Local Base) +/− displacement d

[ST + d] Address given by contents of register ST
[ST - d] (Stack Top) +/− displacement d

Instruction Stack effect Description

Label

LABEL l — Pseudo instruction: symbolic location

Load and store

LOADL n . . . ⇒ n, . . . Push literal integer n onto stack
LOADCA l . . . ⇒ addr(l), . . . Push address of label l (code seg-

ment) onto stack
LOAD a . . . ⇒ [a], . . . Push contents at address a onto stack
LOADA a . . . ⇒ a, . . . Push address a onto stack
LOADI d a, . . . ⇒ [a+ d], . . . Load indirectly; push contents at ad-

dress a+ d onto stack
STORE a n, . . . ⇒ . . . Pop value n from stack and store at

address a
STOREI d a, n, . . . ⇒ . . . Store indirectly; store n at address a+

d

G53CMP-E1 Turn Over

12 G53CMP-E1

Instruction Stack effect Description

Block operations

LOADLB m n . . . ⇒ mn, . . . Push block of n literal integers m
onto stack

LOADIB n a, . . . ⇒ Load block of size n indirectly
[a+ (n− 1)], . . . , [a+ 0], . . .

STOREIB n a, xn, . . . ⇒ . . . Store block of size n indirectly
POP m n xm, yn, . . . ⇒ xm, . . . Pop n values below top m values

Arithmetic operations

ADD n2, n1, . . . ⇒ n1 + n2, . . . Add n1 and n2, replacing n1 and
n2 with the sum

SUB n2, n1, . . . ⇒ n1 − n2, . . . Subtract n2 from n1, replacing n1

and n2 with the difference
MUL n2, n1, . . . ⇒ n1 · n2, . . . Multiply n1 by n2, replacing n1

and n2 with the product
DIV n2, n1, . . . ⇒ n1/n2, . . . Divide n1 by n2, replacing n1 and

n2 with the (integer) quotient
NEG n, . . . ⇒ −n, . . . Negate n, replacing n with the re-

sult

Comparison & logical operations (false = 0, true = 1)

LSS n2, n1, . . . ⇒ n1 < n2, . . . Check if n1 is smaller than n2,
replacing n1 and n2 with the
Boolean result

EQL n2, n1, . . . ⇒ n1 = n2, . . . Check if n1 is equal to n2, replac-
ing n1 and n2 with the Boolean
result

GTR n2, n1, . . . ⇒ n1 > n2, . . . Check if n1 is greater than n2,
replacing n1 and n2 with the
Boolean result

AND b2, b1, . . . ⇒ b1 ∧ b2, . . . Logical conjunction of b1 and
b2, replacing b1 and b2 with the
Boolean result

OR b2, b1, . . . ⇒ b1 ∨ b2, . . . Logical disjunction of b1 and b2, re-
placing b1 and b2 with the Boolean
result

NOT b, . . . ⇒ ¬b, . . . Logical negation of b, replacing b
with the result

G53CMP-E1

13 G53CMP-E1

Instruction Stack effect Description

Control transfer

JUMP l — Jump unconditionally to location
identified by label l

JUMPIFZ l n, . . . ⇒ . . . Jump to location identified by label l
if n = 0 (i.e., n is false)

JUMPIFNZ l n, . . . ⇒ . . . Jump to location identified by label l
if n 6= 0 (i.e., n is true)

CALL l . . . ⇒ PC+ 1, LB, 0, . . . Call global subroutine at location l:
Activation record set up by pushing
static link (0 for global level), dynamic
link (value of LB), and return address
(PC+1, address of instruction after
the call instruction) onto the stack;
PC = l ; LB = start of activation record
(address of static link)

CALLI ca, sl , . . . ⇒ Call subroutine indirectly:
PC+ 1, LB, sl , . . . address of routine (ca) and static link

to use (sl) on top of the stack; acti-
vation record and new PC and LB as
for CALL

RETURN m n xm, yp, ra, olb, sl , yn, . . . Return from subroutine,
⇒ xm, . . . replacing activation record by result,

jumping to return address (PC = ra),
and restoring the old local base (LB =
olb)

Input/Output

PUTINT n, . . . ⇒ . . . Print n to the terminal as a decimal
integer

PUTCHR n, . . . ⇒ . . . Print the character with character
code n to the terminal

GETINT . . . ⇒ n, . . . Read decimal integer n from the ter-
minal and push onto the stack

GETCHR . . . ⇒ n, . . . Read character from the terminal and
push its character code n onto the
stack

TAM Control

HALT — Stop execution and halt the machine

G53CMP-E1 End

