
COMP3012/G53CMP-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE

A LEVEL 3 MODULE, AUTUMN SEMESTER 2018–2019

COMPILERS

ANSWERS
Time allowed TWO hours

Candidates may complete the front cover of their answer book and sign their
desk card but must NOT write anything else until the start of the examination

period is announced.

Answer ALL THREE questions

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first language is
not English may use a standard translation dictionary to translate between

that language and English provided that neither language is the subject of this
examination. Subject-specific translation directories are not permitted.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

Note: ANSWERS

COMP3012/G53CMP-E1 Turn Over

2 COMP3012/G53CMP-E1

Knowledge classification: Following School recommendation, the (sub)questions
have been classified as follows, using a subset of Bloom’s Taxonomy:

K: Knowledge

C: Comprehension

A: Application

Note that some questions are closely related to the coursework. This is
intentional and as advertised to the students; the coursework is a central aspect
of the module and as such partly examined under exam conditions.

Question 1
See Appendix A for the MiniTriangle grammars relevant to this question.

(a) The following is a Haskell datatype definition for representing the abstract
syntax of a selection of MiniTriangle commands. The type Expression

represents the abstract syntax of expressions.

data Command = CmdAssign Expression Expression

| CmdIf Expression Command Command

| CmdWhile Expression Command

| CmdSeq [Command]

A Happy parser specification dealing with commands and sequences of
commands is given below. The semantic actions for constructing an ab-
stract syntax tree (AST) have been left out (indicated by a boxed number,
like 3). Complete the specification by providing semantic actions for con-
structing an AST. The type of the semantic values of the non-terminals
var expression and expression is Expression.

commands :: { [Command] }
commands : command { 1 }

| command ’;’ commands { 2 }

command :: { Command }
command

: var_expression ’:=’ expression { 3 }
| IF expression THEN command ELSE command { 4 }
| WHILE expression DO command { 5 }
| BEGIN commands END { 6 }

(6)

COMP3012/G53CMP-E1

3 COMP3012/G53CMP-E1

Answer: [C]

1 = [$1]

2 = $1 : $3

3 = CmdAssign $1 $3

4 = CmdIf $2 $4 $6

5 = CmdWhile $2 $4

6 = CmdSeq $2

Marking: 1 marks for each semantic action. (6× 1 = 6)

COMP3012/G53CMP-E1 Turn Over

4 COMP3012/G53CMP-E1

(b) Suppose we wish to extend MiniTriangle with a for-loop (a new com-
mand). The following two code fragments illustrate the idea:

• for i from 1 to 10 do x[i] := i * i

• for j from 2 * m to n step -2 do sum := sum + j

The for-loop has the following semantics. The expressions defining the
start, end, and step are evaluated exactly once. The loop variable is ini-
tialised to the value given by the expression following the keyword from.
The loop body is then repeated 0 or more times, incrementing (if positive
step size) or decrementing (if negative step size) the loop variable after
each execution of the body until the value of the loop variable is greater
(positive step size) or smaller (negative step size) than the value of the
expression following the keyword to. Note that the step size is optional.
If left out, it should default to 1. Thus, in the first example, i will assume
the values 1, 2, . . . , 10 in that order, with the loop body x[i] := i *

i executed once for each assignment.

(i) Extend the MiniTriangle lexical and concrete syntax with new pro-
ductions defining the syntax of the for-loop. Pick the syntactic cat-
egories for the constituent parts with care: your extended grammars
should be reasonably general, and in particular general enough to
accept both examples above. (4)

Answer: [A] The following productions need to be added to the
lexical grammar:

Keyword → for | from | step | to

And the following is one way to extend the concrete grammar:

Command → for VarExpression from Expression

to Expression OptStep do Command

OptStep → ǫ | step Expression

(ii) Extend the type Command with a new constructor for representing
for-loops. Then show how to extend the Happy parser specification
so that the new construct is accepted and a corresponding AST
gets constructed. You may assume that all extensions related to the
lexical syntax, including extending the scanner, have already been
carried out. (5)

COMP3012/G53CMP-E1

5 COMP3012/G53CMP-E1

Answer: [A] Abstract syntax extension:

data Command = ...

| CmdFor Expression Expression Expression

(Maybe Expression) Command

Extension of the parser specification:

command :: { Command }
command

: ...

| FOR var_expression FROM expression TO expression

opt_step DO command

{ CmdFor $2 $4 $6 $7 $9 }

opt_step :: { Maybe Expression }
opt_step

: {- epsilon -} { Nothing }
| STEP expression { (Just $2) }

An alternative, as we know that the default of an omitted STEP is 1,
is to represent the for-loop without making use of the maybe type:

data Command = ...

| CmdFor Expression Expression Expression

Expression Command

The parser is extended as before, except that the productions for
opt step instead are defined as follows:

opt_step :: { Expression }
opt_step

: {- epsilon -} { ExpLitInt 1 }
| STEP expression { $2) }

(Only one variant is needed for full marks, of course)

(c) Write the case(s) of a code-generation function execute for generating
code for the for-loop, targetting the Triangle Abstract Machine (TAM).
See appendix B for a specification of the TAM instructions. The code
generation function should be specified through code templates in the
style used in the lectures. Thus, for the case without the optional step
size, something along the lines

execute n [[for Ex from Ef to Et do C]] = . . .

where n is the current stack depth.

Assume a code-generation function evaluate (which does not need the
current stack depth as expressions do not introduce new variables) for

COMP3012/G53CMP-E1 Turn Over

6 COMP3012/G53CMP-E1

generating code for expressions, leaving the value of the expression on the
top of the stack. Assume further that calling evaluate on the expression
corresponding to the loop variable generates code that leaves the address
of the variable on the stack (for use by instructions such as LOADI and
STOREI). Call execute recursively for commands. Generation of fresh la-
bels need not be considered; it suffices that labels are distinct within each
case of the code function. (Also, there is no need to consider environments
for mapping identifiers to addresses etc.) Take care to only generate code
for the body once. (10)

COMP3012/G53CMP-E1

7 COMP3012/G53CMP-E1

Answer: [A] The following cases generate code for the for-loop:

execute n [[for Ex from Ef to Et do C]] =

execute n [[for Ex from E1 to E2 step 1 do C]]

execute n [[for Ex from Ef to Et step Es do C]] =

evaluate [[Ex]]

evaluate [[Ef]]

LOAD [ST - 2]

STOREI 0

evaluate [[Et]]

evaluate [[Es]]

loop:

LOAD [ST - 3]

LOADI 0

LOAD [ST - 3]

LOAD [ST - 3]

LOADL 0

LSS

JUMPIFNZ negstep

GTR

JUMPIFNZ out

JUMP body

negstep:

LSS

JUMPIFNZ out

body:

execute (n+ 3) [[C]]

LOAD [ST - 3]

LOADI 0

LOAD [ST - 2]

ADD

LOAD [ST - 4]

STOREI 0

JUMP loop

out:

POP 0 3

COMP3012/G53CMP-E1 Turn Over

8 COMP3012/G53CMP-E1

COMP3012/G53CMP-E1

9 COMP3012/G53CMP-E1

Question 2

(a) Consider the following expression language:

e → expressions:
| n natural numbers, n ∈ N

| x variables, x ∈ Name
| e + e addition
| e - e subtraction
| e * e multiplication
| e = e equality test
| if e then e else e conditional
| let var x = e in e variable definition
| let fun f(x :t) :t = e in e function definition
| e(e) function application

where Name is the set of variable names. The types are given by the
following grammar:

t → types:
| Nat natural numbers
| Bool Booleans
| t → t function (arrow) type

The ternary relation Γ ⊢ e : t says that expression e has type t in the
typing context Γ. It is defined by the following typing rules:

Γ ⊢ n : Nat (T-NAT)

x : t ∈ Γ
Γ ⊢ x : t

(T-VAR)

Γ ⊢ e1 : Nat Γ ⊢ e2 : Nat
Γ ⊢ e1 + e2 : Nat

(T-ADD)

Γ ⊢ e1 : Nat Γ ⊢ e2 : Nat
Γ ⊢ e1 - e2 : Nat

(T-SUB)

Γ ⊢ e1 : Nat Γ ⊢ e2 : Nat
Γ ⊢ e1 * e2 : Nat

(T-MUL)

Γ ⊢ e1 : Nat Γ ⊢ e2 : Nat
Γ ⊢ e1 = e2 : Bool

(T-EQ)

COMP3012/G53CMP-E1 Turn Over

10 COMP3012/G53CMP-E1

Γ ⊢ e1 : Bool Γ ⊢ e2 : t Γ ⊢ e3 : t
Γ ⊢ if e1 then e2 else e3 : t

(T-COND)

Γ ⊢ e1 : t1 Γ, x : t1 ⊢ e2 : t2
Γ ⊢ let var x = e1 in e2 : t2

(T-LETVAR)

Γ, f : t11 → t12, x : t11 ⊢ e1 : t12 Γ, f : t11 → t12 ⊢ e2 : t2
Γ ⊢ let fun f(x :t11) :t12 = e1 in e2 : t2

(T-LETFUN)

Γ ⊢ e1 : t2 → t1 Γ ⊢ e2 : t2
Γ ⊢ e1(e2) : t1

(T-APP)

A typing context, Γ in the rules above, is a comma-separated sequence of
variable-name and type pairs, such as

x : Nat, y : Bool, z : Nat

or empty, denoted ∅. Typing contexts are extended on the right, e.g.
Γ, z : Nat, the membership predicate is denoted by ∈, and lookup is
from right to left, ensuring recent bindings hide earlier ones.

Use the typing rules given above to formally derive the type of the fol-
lowing (well-typed) expressions in the empty environment (∅). Your proof
should be in the form of a proof tree.

(i) let var x = 1 + 7 in x * x

(4)
Answer: [C]

∅ ⊢ 1 : Nat
T-NAT

∅ ⊢ 7 : Nat
T-NAT

∅ ⊢ 1 + 7 : Nat
T-ADD

∅, x : Nat ⊢ x * x : Nat
below

∅ ⊢ let var x = 1 + 7 in x * x : Nat
T-LETVAR

x : Nat ∈ ∅, x : Nat

∅, x : Nat ⊢ x : Nat
T-VAR

x : Nat ∈ ∅, x : Nat

∅, x : Nat ⊢ x : Nat
T-VAR

∅, x : Nat ⊢ x * x : Nat
T-MUL

(ii) let fun fac(n : Nat) : Nat =

if n = 0 then 1 else n * fac(n - 1)

in

fac(7)

(9)
Answer: [C] Let

b = if n = 0 then 1 else n * fac(n - 1)

Γ1 = ∅, fac : Nat → Nat, n : Nat

Γ2 = ∅, fac : Nat → Nat

COMP3012/G53CMP-E1

11 COMP3012/G53CMP-E1

Γ1 ⊢ b : Nat
below

fac : Nat → Nat ∈ Γ2

Γ2 ⊢ fac : Nat → Nat
T-VAR

Γ2 ⊢ 7 : Nat
T-NAT

Γ2 ⊢ fac(7) : Nat
T-APP

∅ ⊢ let fun fac(n :Nat) :Nat = b in fac(7) : Nat
T-LETFUN

Γ1 ⊢ n = 0 : Bool
below

Γ1 ⊢ 1 : Nat
T-NAT

Γ1 ⊢ n * fac(n - 1) : Nat
below

Γ1 ⊢ b : Nat
T-COND

n : Nat ∈ Γ1

Γ1 ⊢ n : Nat
T-VAR

Γ1 ⊢ 0 : Nat
T-NAT

Γ1 ⊢ n = 0 : Bool
T-EQ

n : Nat ∈ Γ1

Γ1 ⊢ n : Nat
T-VAR

fac : Nat → Nat ∈ Γ1

Γ1 ⊢ fac : Nat → Nat
T-VAR

Γ1 ⊢ n - 1 : Nat
below

Γ1 ⊢ fac(n - 1) : Nat
T-APP

Γ1 ⊢ n * fac(n - 1) : Nat
T-MUL

n : Nat ∈ Γ1

Γ1 ⊢ n : Nat
T-VAR

Γ1 ⊢ 1 : Nat
T-NAT

Γ1 ⊢ n - 1 : Nat
T-SUB

(b) Suppose we wish to extend MiniTriangle with a command break:

Command →
| break IntegerLiteral CmdBreak

See Appendix A for the abstract syntax for the remaining MiniTriangle
commands. The intended semantics of break n, where n ≥ 1, is to ter-
minate the innermost n loops, with the execution continuing immediately
after the nth loop. It should be a static error if there are fewer than n
loops enclosing a command break n or if n < 1. Define, using inference
rules, a binary relation Well Enclosed on numbers and commands charac-
terising the static correctness of commands in this sense. Hint: Think of
the number as a form of context keeping track of the number of enclosing
loops. (12)

Answer: [A] We need to define a relation on numbers and commands

n ⊢ Command

such that a number n is related to a Command c, n ⊢ c, iff enclosing c in
n loops ensures that all contained commands break m are enclosed by at
least m loops and for all arguments m of contained commands break m,
m ≥ 1.

COMP3012/G53CMP-E1 Turn Over

12 COMP3012/G53CMP-E1

n ⊢ e1 := e2 (WE-ASSIGN)

n ⊢ e1(e2) (WE-CALL)

n ⊢ c
n ⊢ begin c end

(WE-SEQ)

n ⊢ c1 n ⊢ c2
n ⊢ if e then c1 else c2

(WE-IF)

n+ 1 ⊢ c
n ⊢ while e do c

(WE-WHILE)

n ⊢ c
n ⊢ let d in c

(WE-LET)

1 ≤ m ≤ n
n ⊢ break m

(WE-BREAK)

COMP3012/G53CMP-E1

13 COMP3012/G53CMP-E1

Question 3

(a) Transform the following code fragment into static single assignment (SSA)
form:

a := 1;

b := 17;

i := 0;

while i < n do begin

c := a + i;

i := i + 1;

a := c

end;

b := b + a

(10)

Answer: [A]

a1 := 1;

b1 := 17;

i1 := 0;

while (a2 = φ(a1,a3), i2 = φ(i1,i3), i2 < n) do begin

c := a2 + i2;
i3 := i2 + 1

a3 := c;

end;

b2 := b1 + a2

(b) This question concerns register allocation by graph colouring. Consider
the following assembly code fragment for a typical register machine:

load R0, 1

load R1, 0

loop: mul R2, R0, R0

mul R3, R0, R0

mul R4, R3, R0

add R5, R2, R4

add R1, R1, R5

load R6, 1

add R0, R0, R6

load R7, 10

cmp R0, R7

ble loop

The load instruction stores a numeric constant into the designated reg-
ister. Arithmetic instructions with three register arguments perform the

COMP3012/G53CMP-E1 Turn Over

14 COMP3012/G53CMP-E1

arithmetic operation on the two last registers and store the result into the
first. The instruction ble is a conditional branch (jump) instruction.

(i) Draw the interference graph for the above code fragment. It should
have one node for each of the eight registers being used. (6)

Answer: [A]

R0 and R1 are loop variables (registers), live at the start of the loop
and used before being updated in each iteration. Their live ranges
thus overlap with those of all other variables, including each other.
R2 is used in the definition (computation) of R5. It’s live range thus
overlaps with those of R3 and R4. All other variables are short lived:
there are thus no further overlapping live ranges.

R0 R1

R3R2 R4 R5 R6 R7

(ii) “Colour” the interference graph using as few colours as possible
such that no two adjacent nodes have the same colour. Use this
result to carry out register allocation for the above code fragment
by associating each colour with one register. Your answer should
include the coloured graph and the final version of the code using a
minimal number of registers. (9)

Answer: [A]

Node Colour Register

R0 red R0
R1 green R1
R2 blue R2
R3 black R3
R4 black R3
R5 black R3
R6 black R3
R7 black R3

(This is not the only possible (minimal) colouring, and of course it
does not matter whether actual colour names or some other naming
scheme is used. Indeed, in practice, “colouring” would typically be
done directly in terms of physical registers.)

load R0, 1

load R1, 0

COMP3012/G53CMP-E1

15 COMP3012/G53CMP-E1

loop: mul R2, R0, R0

mul R3, R0, R0

mul R3, R3, R0

add R3, R2, R3

add R1, R1, R3

load R3, 1

add R0, R0, R3

load R3, 10

cmp R0, R3

ble loop

COMP3012/G53CMP-E1 Turn Over

16 COMP3012/G53CMP-E1

Appendix A: MiniTriangle Grammars
This appendix contains the grammars for the MiniTriangle lexical, concrete, and
abstract syntax. The following typographical conventions are used to distinguish
between terminals and non-terminals:

• nonterminals are written like this

• terminals are written like this

• terminals with variable spelling and special symbols are written like this

MiniTriangle Lexical Syntax:

Program → (Token | Separator)∗

Token → Keyword | Identifier | IntegerLiteral | Operator

| , | ; | : | := | = | (|) | [|] | eot

Keyword → begin | const | do | else | end | fun | if | in
| let | out | proc | then | var | while

Identifier → Letter | Identifier Letter | Identifier Digit

except Keyword

IntegerLiteral → Digit | IntegerLiteral Digit

Operator → ^ | * | / | + | - | < | <= | == | != | >= | > | && | || | !

Letter → A | B | . . . | Z | a | b | . . . | z

Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Separator → Comment | space | eol

Comment → // (any character except eol)∗ eol

COMP3012/G53CMP-E1

17 COMP3012/G53CMP-E1

MiniTriangle Concrete Syntax:

Program → Command

Commands → Command

| Command ; Commands

Command → VarExpression := Expression

| VarExpression (Expressions)

| if Expression then Command

else Command

| while Expression do Command

| let Declarations in Command

| begin Commands end

Expressions → ǫ
| Expressions1

Expressions1 → Expression

| Expression , Expressions1

Expression → PrimaryExpression

| Expression BinaryOperator Expression

PrimaryExpression → IntegerLiteral

| VarExpression

| UnaryOperator PrimaryExpression

| VarExpression (Expressions)

| [Expressions]

| (Expression)

VarExpression → Identifier

| VarExpression [Expression]

BinaryOperator → ^ | * | / | + | - | < | <= | == | != | >= | > | && | ||

UnaryOperator → - | !

COMP3012/G53CMP-E1 Turn Over

18 COMP3012/G53CMP-E1

Declarations → Declaration

| Declaration ; Declarations

Declaration → const Identifier : TypeDenoter = Expression

| var Identifier : TypeDenoter

| var Identifier : TypeDenoter := Expression

| fun Identifier (ArgDecls) : TypeDenoter = Expression

| proc Identifier (ArgDecls) Command

ArgDecls → ǫ
| ArgDecls1

ArgDecls1 → ArgDecl

| ArgDecl , ArgDecls1

ArgDecl → Identifier : TypeDenoter

| in Identifier : TypeDenoter

| out Identifier : TypeDenoter

| var Identifier : TypeDenoter

TypeDenoter → Identifier

| TypeDenoter [IntegerLiteral]

Note that the productions for Expression make the grammar as stated above
ambiguous. Operator precedence and associativity for the binary operators as
defined in the following table are used to disambiguate:

Operator Precedence Associativity

^ 1 right
* / 2 left
+ - 3 left

< <= == != >= > 4 non
&& 5 left
|| 6 left

A precedence level of 1 means the highest precedence, 2 means second highest,
and so on.

COMP3012/G53CMP-E1

19 COMP3012/G53CMP-E1

MiniTriangle Abstract Syntax: Name = Identifier ∪Operator .

Program → Command Program

Command → Expression := Expression CmdAssign
| Expression (Expression∗) CmdCall
| begin Command ∗ end CmdSeq
| if Expression then Command CmdIf

else Command

| while Expression do Command CmdWhile
| let Declaration∗ in Command CmdLet

Expression → IntegerLiteral ExpLitInt

| Name ExpVar
| Expression (Expression∗) ExpApp
| [Expression∗] ExpAry
| Expression [Expression] ExpIx

Declaration → const Name : TypeDenoter DeclConst
= Expression

| var Name : TypeDenoter DeclVar
(:= Expression | ǫ)

| fun Name (ArgDecl∗) DeclFun
: TypeDenoter = Expression

| proc Name (ArgDecl∗) Command DeclProc

ArgDecl → ArgMode Name : TypeDenoter ArgDecl

ArgMode → ǫ ByValue
| in ByRefIn
| out ByRefOut
| var ByRefVar

TypeDenoter → Name TDBaseType
→ TypeDenoter [IntegerLiteral] TDArray

COMP3012/G53CMP-E1 Turn Over

20 COMP3012/G53CMP-E1

Appendix B: Triangle Abstract Machine (TAM) Instructions

Meta variable Meaning

a Address: one of the forms specified by table below
when part of an instruction, specific stack address
when on the stack

b Boolean value (false = 0 or true = 1)

ca Code address; address to routine in the code seg-
ment

d Displacement; i.e., offset w.r.t. address in register
or on the stack

l Label name

m, n, p Integer

x, y, z Any kind of stack data

xn Vector of n items, n ≥ 0, here any kind

Address form Description

[SB + d] Address given by contents of register SB
[SB - d] (Stack Base) +/− displacement d

[LB + d] Address given by contents of register LB
[LB - d] (Local Base) +/− displacement d

[ST + d] Address given by contents of register ST
[ST - d] (Stack Top) +/− displacement d

Instruction Stack effect Description

Label

LABEL l — Pseudo instruction: symbolic location

Load and store

LOADL n . . . ⇒ n, . . . Push literal integer n onto stack
LOADCA l . . . ⇒ addr(l), . . . Push address of label l (code seg-

ment) onto stack
LOAD a . . . ⇒ [a], . . . Push contents at address a onto stack
LOADA a . . . ⇒ a, . . . Push address a onto stack
LOADI d a, . . . ⇒ [a+ d], . . . Load indirectly; push contents at ad-

dress a+ d onto stack
STORE a n, . . . ⇒ . . . Pop value n from stack and store at

address a
STOREI d a, n, . . . ⇒ . . . Store indirectly; store n at address a+

d

COMP3012/G53CMP-E1

21 COMP3012/G53CMP-E1

Instruction Stack effect Description

Block operations

LOADLB m n . . . ⇒ mn, . . . Push block of n literal integers m
onto stack

LOADIB n a, . . . ⇒ Load block of size n indirectly
[a+ (n− 1)], . . . , [a+ 0], . . .

STOREIB n a, xn, . . . ⇒ . . . Store block of size n indirectly
POP m n xm, yn, . . . ⇒ xm, . . . Pop n values below top m values

Arithmetic operations

ADD n2, n1, . . . ⇒ n1 + n2, . . . Add n1 and n2, replacing n1 and
n2 with the sum

SUB n2, n1, . . . ⇒ n1 − n2, . . . Subtract n2 from n1, replacing n1

and n2 with the difference
MUL n2, n1, . . . ⇒ n1 · n2, . . . Multiply n1 by n2, replacing n1

and n2 with the product
DIV n2, n1, . . . ⇒ n1/n2, . . . Divide n1 by n2, replacing n1 and

n2 with the (integer) quotient
NEG n, . . . ⇒ −n, . . . Negate n, replacing n with the re-

sult

Comparison & logical operations (false = 0, true = 1)

LSS n2, n1, . . . ⇒ n1 < n2, . . . Check if n1 is smaller than n2,
replacing n1 and n2 with the
Boolean result

EQL n2, n1, . . . ⇒ n1 = n2, . . . Check if n1 is equal to n2, replac-
ing n1 and n2 with the Boolean
result

GTR n2, n1, . . . ⇒ n1 > n2, . . . Check if n1 is greater than n2,
replacing n1 and n2 with the
Boolean result

AND b2, b1, . . . ⇒ b1 ∧ b2, . . . Logical conjunction of b1 and
b2, replacing b1 and b2 with the
Boolean result

OR b2, b1, . . . ⇒ b1 ∨ b2, . . . Logical disjunction of b1 and b2, re-
placing b1 and b2 with the Boolean
result

NOT b, . . . ⇒ ¬b, . . . Logical negation of b, replacing b
with the result

COMP3012/G53CMP-E1 Turn Over

22 COMP3012/G53CMP-E1

Instruction Stack effect Description

Control transfer

JUMP l — Jump unconditionally to location
identified by label l

JUMPIFZ l n, . . . ⇒ . . . Jump to location identified by label l
if n = 0 (i.e., n is false)

JUMPIFNZ l n, . . . ⇒ . . . Jump to location identified by label l
if n 6= 0 (i.e., n is true)

CALL l . . . ⇒ PC+ 1, LB, 0, . . . Call global subroutine at location l:
Activation record set up by pushing
static link (0 for global level), dynamic
link (value of LB), and return address
(PC+1, address of instruction after
the call instruction) onto the stack;
PC = l ; LB = start of activation record
(address of static link)

CALLI ca, sl , . . . ⇒ Call subroutine indirectly:
PC+ 1, LB, sl , . . . address of routine (ca) and static link

to use (sl) on top of the stack; acti-
vation record and new PC and LB as
for CALL

RETURN m n xm, yp, ra, olb, sl , yn, . . . Return from subroutine,
⇒ xm, . . . replacing activation record by result,

jumping to return address (PC = ra),
and restoring the old local base (LB =
olb)

Input/Output

PUTINT n, . . . ⇒ . . . Print n to the terminal as a decimal
integer

PUTCHR n, . . . ⇒ . . . Print the character with character
code n to the terminal

GETINT . . . ⇒ n, . . . Read decimal integer n from the ter-
minal and push onto the stack

GETCHR . . . ⇒ n, . . . Read character from the terminal and
push its character code n onto the
stack

TAM Control

HALT — Stop execution and halt the machine

COMP3012/G53CMP-E1 End

