
COMP4075
Real-world Functional Programming:

Coursework Part II And Exam
Autumn, Academic Year 2020/21

Henrik Nilsson
School of Computer Science

University of Nottingham

December 5, 2020

1 Introduction

The module COMP4075 was set to be assessed by 100% coursework the
academic year 2020/21: a change from previous academic years, where the
assessment was by 50% coursework and 50% exam, to adapt the module de-
livery to the circumstances brought about by the Covid pandemic. However,
due to a clerical error, the official syllabus for COMP4075 was never updated,
meaning that the module still has to be examined by way of coursework and
exam. As this problem surfaced well after teaching had started, it has been
agreed that the formal assessment requirements will be met by “converting”
part of the old Part II Coursework into an on-line, take-home “exam” so as
to minimize the impact of this error on the students taking the module.

Concretely, Task 1 of the old coursework Part II will be the new course-
work Part II, to be submitted by the original deadline, while tasks 2 and 3
will be the “exam”, to be submitted by an examination date yet to be de-
cided in January 2021, but it will be at the earliest 11 January. The upshot
of this is that you will have to make two submissions for what used to be
Part II, that the weights of the tasks have been changed slightly, but that
you have substantially more time to complete the work for the main part.
Everything else remains unchanged: in particular what needs to be done and
what ultimately needs to be submitted.

1



The new weights for the different assessment components, as a percentage
of the overall module mark are as follows:

• Coursework Part I: 25%

• Coursework Part II = Task II.1: 25%

• Exam = Task II.2 & Task II.3; 50%, with the individual components
weighted:

– Task II.2: 40%

– Task II:3: 10%

The COMP4075 coursework and exam is to be carried out individually.
You are welcome to discuss the coursework with friends, in the COMP4075
Moodle forum, with the module team, etc., but, in the end, you must solve
the problems on your own and demonstrate that you have done so by being
able to explain your solutions as well as their wider context.

2 Practicalities

For basic practical information on how to work with Haskell on the School’s
computers, and issues specific to various platforms such as Windows and
Linux, see Part I of the coursework.

However, for some of the tasks here you may have to install additional
packages using Cabal. To get started, ensure the list of available packages is
up to date:

cabal update

You can list what packages are available; e.g.

cabal list

cabal list --installed

To install a package, do:

cabal install <package-name>

However, installing large packages, at least on the School’s servers, some-
times fails with errors “failed to create OS thread” (which can be hard to see
as this then causes lots of follow-on errors obscuring the initial cause). The
problem appears to be that certain resource limits are configured in a quite
conservative way on the School’s servers. To avoid this problem, limit the

2



number of concurrent processes that Cabal spawns. The most conservative is
to set the limit to 1, but this means no parallelism and thus possibly lengthy
installation times:

cabal install -j1 <package-name>

Setting the limit to 3 also appears to work and might be an acceptable
compromise.

For general assistance, Cabal provides built-in help:

cabal help

cabal help <subcommand>

3 Submission and Assessment

For information about deadlines, see the module web page. For Part II of the
coursework and the Exam, the following has to be submitted by the relevant
deadline:

• A brief written report as specified below.

• The source code of all solutions.

The submission is electronic. For Part II of the coursework:

• Electronic copy of the report (PDF). The file should be called
psyxyz-report-partII.pdf, where psyxyz should be replaced by your
University of Nottingham user ID.

• Archive of the source code hierarchy (gzipped TAR, or zip). The archive
should be called psyxyz-src-partII.tgz or psyxyz-src-partII.zip,
where psyxyz again should be replaced by your University of Notting-
ham user ID, and it should contain a single top-level directory contain-
ing all the other files.

The submission requirements for the exam are the same, except that the
exact naming conventions may be different: follw the submission instrutions
for the exam.

The written reports should be structured by task. For each task:

• Brief comments about the key idea of the solution, how it works, and
any subtle aspects; a few sentences to a couple of paragraphs would
usually suffice.

3



• Answers to any theoretical questions.

• Unless specified otherwise, the code you wrote or added, with enough
context to make an incomplete definition easy to understand. Thus, in
cases where you have extended given code, you do not need to include
what was given, except small excerpts to provide context if necessary.
Indeed, if the give code is lengthy, you are encouraged to keep what
you include in the report to a minimum.

• Anything extra that the task specifically asks for.

As for part I, solutions will be assessed on correctness and style. See
the Part I description for details. However, for tasks with a large weight,
fractional correctness and style marks may be used for a more fine-grained
assessment.

4



4 Tasks

Task II.1 (Weight 25%)
Implement a deadlock-free solution to the Dining Philosophers problem

using Software Transactional Memory (STM). See

https://en.wikipedia.org/wiki/Dining_philosophers_problem

for the problem statement.
Each philosopher should be represented by a thread (forkIO), given a

name and, to allow us to see what is going on, announce (print to the termi-
nal) when they are hungry, eating, and thinking, stating their name as well in
each case (e.g. Socrates is hungry). They should eat and think for a period
of time decided at random (import System.Random and use threadDelay).

While the solution to this task will be rather “imperative” in style, it is
still possible to deploy neat functional programming techniques and appro-
priate types to obtain an elegant overall solution, and this will be taken into
account is the assessment for style.

In addition to brief explanations of the design and implementation, dis-
cuss your STM solution in relation to the two classical solutions outlined
in the Wikipedia article (Resource Hierarchy Solution and Arbitrator So-

lution). Explain in particular why your solution is free from deadlocks, and
any pros and cons of using STM compared to the classical solutions.

In summary, for his task, the written report should include:

• Brief explanations of your design and implementation

• The code you wrote

• Enough sample output to provide evidence that your solution is working

• Discussion of your STM solution in relation to the classical solutions

Task II.2 (Weight 40%)
Implement a simple “electronic calculator” using the Threepenny GUI

framework: https://wiki.haskell.org/Threepenny-gui (this will be cov-
ered in a lecture shortly). It should look and behave in a reasonably standard
way: see section 1 of https://en.wikipedia.org/wiki/Calculator.

You will likley have to install the Threepenny GUI package:

cabal install threepenny-gui

5



However, do check the section on using Cabal above, in particular if the
installation fails for some reason. Also, if you are running on the School’s
Linux servers and if you want interact with your application from a browser
running on your local machine, you will have to set up a tunnel:

ssh -fN -L8023:127.0.0.1:8023 severn

At the very least, the calculator should:

• Handle at least 10-digit integers

• Support addition, subtraction, multiplication, and division

• Allow the sign to be changed (+/-)

• Allow the calculator to be reset (C) as well as clearing the last entry
(CE)

A functioning and reasonably looking basic calculator will get half the marks.
For full marks, the calculator should additionally:

• Support calculations with decimal fractions (decimal point)

• Have a memory and associated functions for store and recall

• Support standard precedence rules among the arithmetic operations
along with parentheses for grouping (e.g. the result of entering 1+3∗4 =
should be 13 and the result of entering 5+ 3 ∗ (5− 9) = should be −7)

• Have a clearly structured implementation making use of appropriate
functional programming techniques and types (e.g. a state transition
function embodying the logical core, Functional Reactive Programming
or other ways to manage events and effecs to avoid the proverbial “call-
back soup”).

You might find the classic Shunting-yard Algorithm due to Edsger Dijk-
stra to be helpful for handling precedence:

https://en.wikipedia.org/wiki/Shunting-yard algorithm

Another possibility is to simply gather all input as a string and parse it ac-
cording to a grammar imparting the desired precedence among the operators.
This tend to be how more modern calculators, including typical mobile apps,
work. The parsing could happen repeatedly as the input is being entered,
with an evaluation after each successful parse, or only at the end when the
result is demanded.

For this task, the written report itself should include:

6



• Brief explanation of your design and implementation, including a clear
statemenet of which requirements your solution handles

• Enough code to illustrate the key ideas and aspects of the implemen-
tation

• Two or three screen dumps showing your calculator in action

Task II.3 (Weight 10%)
This task concerns developing some QuickCheck tests for the Skew Binary

Random Access List (SBRAL) implementation from part I of the coursework,
Task I.3. The QuickCheck tests need to meet the requirements set out below,
either by following the suggested approach outlined here, or by developing
your own set of tests. Indeed, you may already have used QuickCheck in your
solution to Task I.3, in which case you can reuse the relevant parts for this
task. You can choose to test either your own solution to task I.3, or the one
from the model solution (once released).

Requirements:

• Three different QuickCheck properties, each testing an aspect of gen-
uine interest.

• The report should provide a brief explanation of each property.

• At least one of the properties should cover drop, and at least one should
cover update.

• The QuickCheck label mechanism should be used to give give an idea
of the test coverage.

• The report should include representative output for each of the three
properties.

Suggested approach: An easy way to generate test data and to formulate
properties is to use lists and to relate the SBRAL operations to corresponding
operations on lists. As the operations are polymorphic in the type of the list
elements, it is fine to formulate the tests in terms of some concrete element
type, such as Int, as the polymorphic type makes it clear that the element
type cannot impact on the behaviour. To that end:

• Implement two functions to convert lists to and from skew binary ran-
dom access lists:

– toRList :: [a] -> RList a

7



– fromRList :: RList a -> [a]

• Converting a list to a skew binary random access list and back should
of course yield the exact same list; i.e., the function composition of
fromRList and toRlist is the identity function on lists. Write a quick-
check property that captures this. E.g., its signature could be:

prop FromRListToRList :: [Int] -> Property

Use the label mechanism to show the lengths of the lists on which this
property is tested when invoked from e.g. quickCheck.

• Formulate a correctness property for SBRAL drop in terms of drop

on lists: given a list of length n, dropping m ≤ n elements from the
SBRAL version of the list should mirror dropping m elements from the
list:

prop Drop :: [Int] -> Property

Again, use the label mechanism to show the lengths of the lists and
the chosen number of elements to drop.

• In a similar way, formulate a correctness property for SBRAL update

by relating it to an update on lists (expressed in terms of list operations
like drop and take):

prop Update :: Int -> NonEmptyList Int -> Property

Note that updating is not defined for an empty list. Thus it makes
sense to formulate the property for non-empty lists only. Again, use
the label mechanism to show the lengths of the lists and the chosen
update positions.

8


