#### COMP4075: Lecture 4

Pure Functional Programming: Exploiting Laziness

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 4 - p.1/3

### **Recap:** Lazy Evaluation (1)

Lazy evaluation is a *technique for implementing NOR* more efficiently:

- A redex is evaluated only if needed.
- Sharing employed to avoid duplicating redexes.
- Once evaluated, a redex is updated with the result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex is evaluated at most once.

#### **Recap:** Lazy Evaluation (2)



#### **Circular Data Structures (1)**

COMP4075: Lecture 4 – p.2/31

COMP4075: Lecture 4 – p.4/31

#### **Circular Data Structures (2)**



#### Exercise

#### Given the following tree type

#### define:

- An infinite tree where every node is labelled by 1.
- An infinite tree where every node is labelled by its depth from the root node.

#### **Exercise: Solution**

COMP4075: Lecture 4 – p.7/3

### **Circular Programming (1)**

#### A non-empty tree type:

```
data Tree = Leaf Int | Node Tree Tree
```

Suppose we would like to write a function that replaces each leaf integer in a given tree with the *smallest* integer in that tree.

How many passes over the tree are needed?

One!

COMPARTS Lastra A a Cita

#### **Circular Programming (2)**

Write a function that replaces all leaf integers by a given integer, and returns the new tree along with the smallest integer of the given tree:

```
fmr :: Int -> Tree -> (Tree, Int)
fmr m (Leaf i) = (Leaf m, i)
fmr m (Node tl tr) =
    (Node tl' tr', min ml mr)
    where
    (tl', ml) = fmr m tl
    (tr', mr) = fmr m tr
```

COMP4075: Lecture 4 - p.9/31

#### **Circular Programming (3)**

For a given tree t, the desired tree is now obtained as the **solution** to the equation:

```
(t', m) = fmr m t
Thus:
  findMinReplace t = t'
    where
    (t', m) = fmr m t
```

Intuitively, this works because fmr can compute its result without needing to know the *value* of m.

#### A Simple Spreadsheet Evaluator (1)



The evaluated sheet is again simply the **solution** to the stated equation. No need to worry about evaluation order. **Any caveats?** 

COMP4075: Lecture 4 - p.11/3

# A Simple Spreadsheet Evaluator (2)

As it is quite instructive, let us develop this evaluator together. Some definitions to get us started:

COMP4075: Lecture 4 - p.10/3

COMP4075: Lecture 4 - p.12/31

#### **Breadth-first Numbering (1)**

Consider the problem of numbering a possibly infinitely deep tree in breadth-first order:



COMP4075: Lecture 4 - p.13/31

#### **Breadth-first Numbering (2)**

The following algorithm is due to G. Jones and J. Gibbons (1992), but the presentation differs.

Consider the following tree type:

#### Define:

width t i The width of a tree t at level i (0 origin).

label t i j The jth label at level i of a tree t (0 origin).

#### **Breadth-first Numbering (3)**

The following system of equations defines breadth-first numbering:

$$label t 0 0 = 1 \tag{1}$$

label 
$$t(i+1) 0 = label t i 0 + width t i (2)$$

$$label t i (j+1) = label t i j + 1$$
 (3)

Note that label t i 0 is defined for **all** levels i (as long as the widths of all tree levels are finite).

COMP4075: Lecture 4 - p.15/31

#### **Breadth-first Numbering (4)**

The code that follows sets up the defining system of equations:

- Streams (infinite lists) of labels are used as a mediating data structure to allow equations to be set up between adjacent nodes within levels and between the last node at one level and the first node at the next.
- Idea: the tree numbering function for a subtree takes a stream of labels for the *first node* at each level, and returns a stream of labels for the *node after the last node* at each level.

### **Breadth-first Numbering (5)**

 As there manifestly are no cyclic dependences among the equations, we can entrust the details of solving them to the lazy evaluation machinery in the safe knowledge that a solution will be found.

COMP4075: Lecture 4 – p.17/31

COMP4075: Lecture 4 - p.18/31

# **Breadth-first Numbering (6)**

bfn :: Tree a -> Tree Integer Eqns (1) & (2) bfn t = t' where 
$$(ns, t')$$
 = bfnAux  $(1 : ns)$  t

where
 (ns', tl') = bfnAux ns tl
 (ns'', tr') = bfnAux ns' tr

# **Breadth-first Numbering (7)**



COMP4075: Lecture 4 – p.19/31

### **Breadth-first Numbering (8)**



COMP4075: Lecture 4 – p.20/31

# **Dynamic Programming**

#### **Dynamic Programming**:

- Create a *table* of all subproblems that ever will have to be solved.
- Fill in table without regard to whether the solution to that particular subproblem will be needed.
- Combine solutions to form overall solution.

**Lazy Evaluation** is perfect match: no need to worry about finding a suitable evaluation order.

In effect, using laziness to implement limited form of *memoization*.

COMP4075: Lecture 4 - p.21/3

#### **The Triangulation Problem (1)**

Select a set of *chords* that divides a convex polygon into triangles such that:

- no two chords cross each other
- the sum of their length is minimal.

We will only consider computing the minimal length.

See Aho, Hopcroft, Ullman (1983) for details.

#### The Triangulation Problem (2)



COMP4075: Lecture 4 - p.23/3

#### The Triangulation Problem (3)

- Let  $S_{is}$  denote the subproblem of size s starting at vertex  $v_i$  of finding the minimum triangulation of the polygon  $v_i, v_{i+1}, \ldots, v_{i+s-1}$  (counting modulo the number of vertices).
- Subproblems of size less than 4 are trivial.
- Solving  $S_{is}$  is done by solving  $S_{i,k+1}$  and  $S_{i+k,s-k}$  for all k, 1 < k < s-2
- The obvious recursive formulation results in  $3^{s-4}$  (non-trivial) calls.
- But for  $n \ge 4$  vertices there are only n(n-3) non-trivial subproblems!

#### The Triangulation Problem (4)



COMP4075: Lecture 4 – p 25/31

#### The Triangulation Problem (5)

- Let  $C_{is}$  denote the minimal triangulation cost of  $S_{is}$ .
- Let  $D(v_p, v_q)$  denote the length of a chord between  $v_p$  and  $v_q$  (length is 0 for non-chords; i.e. adjacent  $v_p$  and  $v_q$ ).
- For s > 4:

$$C_{is} = \min_{k \in [1, s-2]} \left\{ \begin{array}{l} C_{i,k+1} + C_{i+k,s-k} \\ +D(v_i, v_{i+k}) + D(v_{i+k}, v_{i+s-1}) \end{array} \right\}$$

• For s < 4,  $C_{is} = 0$ .

#### The Triangulation Problem (6)

# These equations can be transliterated straight into Haskell:

COMP4075: Lecture 4 - p.27/31

#### **Attribute Grammars (1)**

Lazy evaluation is also very useful for evaluation of *Attribute Grammars*:

- The attribution function is defined recursively over the tree:
  - takes inherited attributes as extra arguments;
  - returns a tuple of all synthesised attributes.
- As long as there exists some possible attribution order, lazy evaluation will take care of the attribute evaluation.

CANDIOTS Labour 4 n 2021

#### **Attribute Grammars (2)**

 The earlier examples on Circular Programming and Breadth-first Numbering can be seen as instances of this idea.

COMP4075: Lecture 4 - p.29/3

COMP4075: Lecture 4 - p.30/31

#### Reading

- John W. Lloyd. Practical advantages of declarative programming. In Joint Conference on Declarative Programming, GULP-PRODE'94, 1994.
- John Hughes. Why Functional Programming Matters. The Computer Journal, 32(2):98–197, April 1989.
- Thomas Johnsson. Attribute Grammars as a Functional Programming Paradigm. In Functional Programming Languages and Computer Architecture, FPCA'87, 1987

Reading

- Geraint Jones and Jeremy Gibbons.
   Linear-time breadth-first tree algorithms: An exercise in the arithmetic of folds and zips.

   Technical Report TR-31-92, Oxford University Computing Laboratory, 1992.
- Alfred Aho, John Hopcroft, Jeffrey Ullman. Data Structures and Algorithms.
   Addison-Wesley, 1983.

COMP4075: Lecture 4 - p.31/31