
COMP4075: Lecture 6
Type Classes

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 6 – p.1/37

Type Classes

• Type classes is one of the distinguishing
fetures of Haskell

• Introduced to make ad hoc polymorphism, or
overloading, less ad hoc

• Promotes reuse, making code more readable

• Central to elimination of all kinds of
“boiler-plate” code and sophisticated
datatype-generic programming.

Key reason why many practitioners like Haskell:
lots of “programming” can happen automatically!

COMP4075: Lecture 6 – p.2/37

Haskell Overloading (1)

What is the type of (==)?

E.g. the following both work:

1 == 2

’a’ == ’b’

I.e., (==) can be used to compare both numbers
and characters.

Maybe (==) :: a → a → Bool?

No!!! Cannot work uniformly for arbitrary types!

COMP4075: Lecture 6 – p.3/37

Haskell Overloading (2)

A function like the identity function

id :: a → a

id x = x

is polymorphic precisely because it works
uniformly for all types: there is no need to
“inspect” the argument.

In contrast, to compare two “things” for equality,
they very much have to be inspected, and an
appropriate method of comparison needs to
be used.

COMP4075: Lecture 6 – p.4/37

Haskell Overloading (3)

Moreover, some types do not in general admit a
decidable equality. E.g. functions (when their
domain is infinite).

Similar remarks apply to many other types. E.g.:

• We may want to be able to add numbers of
any kind.

• But to add properly, we must understand what
we are adding.

• Not every type admits addition.

COMP4075: Lecture 6 – p.5/37

Haskell Overloading (4)

Idea:

• Introduce the notion of a type class: a set of
types that support certain related operations.

• Constrain those operations to only work for
types belonging to the corresponding class.

• Allow a type to be made an instance of
(added to) a type class by providing
type-specific implementations of the
operations of the class.

COMP4075: Lecture 6 – p.6/37

The Type Class Eq

class Eq a where

(==) :: a → a → Bool

(==) is not a function, but a method of the type
class Eq . It’s type signature is:

(==) :: Eq a ⇒ a → a → Bool

Eq a is a class constraint. It says that that the
equality method works for any type belonging to
the type class Eq .

COMP4075: Lecture 6 – p.7/37

Instances of Eq (1)

Various types can be made instances of a type
class like Eq by providing implementations of the
class methods for the type in question:

instance Eq Int where

x == y = primEqInt x y

instance Eq Char where

x == y = primEqChar x y

COMP4075: Lecture 6 – p.8/37

Instances of Eq (2)

Suppose we have a data type:

data Answer = Yes | No | Unknown

We can make Answer an instance of Eq as follows:

instance Eq Answer where

Yes == Yes = True

No == No = True

Unknown == Unknown = True

== = False

COMP4075: Lecture 6 – p.9/37

Instances of Eq (3)

Consider:

data Tree a = Leaf a

| Node (Tree a) (Tree a)

Can Tree be made an instance of Eq?

COMP4075: Lecture 6 – p.10/37

Instances of Eq (4)

Yes, for any type a that is already an instance of Eq :

instance (Eq a)⇒ Eq (Tree a) where

Leaf a1 == Leaf a2 = a1 == a2

Node t1l t1r == Node t2l t2r = t1l == t2l

&& t1r == t2r

== = False

Note that (==) is used at type a (whatever that
is) when comparing a1 and a2 , while the use of
(==) for comparing subtrees is a recursive call.

COMP4075: Lecture 6 – p.11/37

Derived Instances (1)

Instance declarations are often obvious and
mechanical. Thus, for certain built-in classes
(notably Eq , Ord , Show), Haskell provides a way
to automatically derive instances, as long as

• the data type is sufficiently simple

• we are happy with the standard definitions

Thus, we can do:

data Tree a = Leaf a

| Node (Tree a) (Tree a)

deriving Eq

COMP4075: Lecture 6 – p.12/37

Derived Instances (2)

GHC provides many additional possibilities. With
the extension -XGeneralizedNewtypeDeriving,
a new type defined using newtype can “inherit”
any of the instances of the representation type:

newtype Time = Time Int deriving Num

With the extension -XStandaloneDeriving,
instances can be derived separately from a type
definition (even in a separate module):

deriving instance Eq Time

deriving instance Eq a ⇒ Eq (Tree a)
COMP4075: Lecture 6 – p.13/37

Class Hierarchy

Type classes form a hierarchy. E.g.:

class Eq a ⇒ Ord a where

(<=) :: a → a → Bool

. . .

Eq is a superclass of Ord ; i.e., any type in Ord
must also be in Eq .

COMP4075: Lecture 6 – p.14/37

Haskell vs. OO Overloading (1)

A method, or overloaded function, may thus be
understood as a family of functions where the
right one is chosen depending on the types.

A bit like OO languages like Java. But the
underlying mechanism is quite different and
much more general. Consider read:

read :: (Read a)⇒ String → a

Note: overloaded on the result type! A method
that converts from a string to any other type in
class Read!

COMP4075: Lecture 6 – p.15/37

Haskell vs. OO Overloading (2)

> let xs = [1, 2, 3] :: [Int]

> let ys = [1, 2, 3] :: [Double]

> xs

[1, 2, 3]

> ys

[1.0, 2.0, 3.0]

> (read "42" : xs)

[42, 1, 2, 3]

> (read "42" : ys)

[42.0, 1.0, 2.0, 3.0]

COMP4075: Lecture 6 – p.16/37

Haskell vs. OO Overloading (3)

Taking Java as a typical OO example:

• Classes and interfaces define sets of methods
that elements of a type must support.

• Through generics, classes can be parametrised
on types that can be bounded by classes and
interfaces, a little like constraints in Haskell’s
class/instance declarations.

• However, the overloading is always on the object;
i.e. effectively the first argument to a method:

object.method(arg1, arg2, ...)

COMP4075: Lecture 6 – p.17/37

Implementation (1)

The class constraints represent extra implicit
arguments that are filled in by the compiler.
These arguments are (roughly) the functions to
use.

Thus, internally (==) is a higher order function
with three arguments:

(==) eqF x y = eqF x y

COMP4075: Lecture 6 – p.18/37

Implementation (2)

An expression like

1 == 2

is essentially translated into

(==) primEqInt 1 2

COMP4075: Lecture 6 – p.19/37

Implementation (3)

So one way of understanding a type like

(==) :: Eq a ⇒ a → a → Bool

is that Eq a corresponds to an extra implicit
argument.

The implicit argument corresponds to a so called
directory, or tuple/record of functions, one for
each method of the type class in question.

COMP4075: Lecture 6 – p.20/37

Implementation (4)

A rough illustration of the idea:

class Foo a where

fie :: a → Bool

fum :: a → Int

The types of methods fie and fum:

fie :: Foo a ⇒ a → Bool

fum :: Foo a ⇒ a → Int

COMP4075: Lecture 6 – p.21/37

Implementation (5)

As Foo have two methods, the dictionary needs
to carry two functions. If a pair were to be used
for this purpose, the actual implementations
would be something along the lines:

fie :: (a → Bool , a → Int)→ a → Bool

fie dict x = (fst dict) x

fie :: (a → Bool , a → Int)→ a → Bool

fie dict x = (snd dict) x

COMP4075: Lecture 6 – p.22/37

Some Basic Haskell Classes (1)

class Eq a where

(==), (/=) :: a → a → Bool

class (Eq a)⇒ Ord a where

compare :: a → a → Ordering

(<), (<=), (>=), (>) :: a → a → Bool

max ,min :: a → a → a

class Show a where

show :: a → String

COMP4075: Lecture 6 – p.23/37

Some Basic Haskell Classes (2)

class Num a where

(+), (−), (∗) :: a → a → a

negate :: a → a

abs, signum :: a → a

fromInteger :: Integer → a

class Num a ⇒ Fractional a where

(/) :: a → a → a

recip :: a → a

fromRational :: Rational → a

COMP4075: Lecture 6 – p.24/37

Some Basic Haskell Classes (3)

Quiz: What is the type of a numeric literal like 42?
What about 1.23? Why?

Haskell’s numeric literals are overloaded:

• 42 means fromInteger 42

• 1.23 means fromRational (133 % 100)

Thus:

42 :: Num a ⇒ a

1.23 :: Fractional a ⇒ a

COMP4075: Lecture 6 – p.25/37

A Typing Conundrum (1)

Overloaded (numeric) literals can lead to some
surprises.

What is the type of the following list? Is it even
well-typed???

[1, [2, 3]]

Surprisingly, it is well-typed:

> :type [1, [2, 3]]

[1, [2, 3]] :: (Num [t],Num t)⇒ [[t]]

Why?
COMP4075: Lecture 6 – p.26/37

A Typing Conundrum (2)

The list is expanded into:

[fromInteger 1,

[fromInteger 2, fromInteger 3]]

Thus, if there were some type t for which [t]
were an instance of Num, the 1 would be an
overloaded literal of that type, matching the type
of the second element of the list.

Normally there are no such instances, so what
almost certainly is a mistake will be caught. But
the error message is rather confusing.

COMP4075: Lecture 6 – p.27/37

Multi-parameter Type Classes

GHC supports an extension to allow a class to
have more than one parameter; i.e., definining a
relation on types rather than just a predicate:

class C a b where . . .

This often lead to type inference ambiguities. Can
be addressed through functional dependencies:

class StateMonad s m | m → s where . . .

This enforces that all instances will be such that
m uniquely determines s.

COMP4075: Lecture 6 – p.28/37

Application: Automatic Differentiation

• Automatic Differentiation: method for
augmenting code so that derivative(s)
computed along with main result.

• Purely algebraic method: arbitrary code can
be handled

• Exact results

• But no separate, self-contained
representation of the derivative.

COMP4075: Lecture 6 – p.29/37

Automatic Differentiation: Key Idea

Consider a code fragment:

z1 = x + y

z2 = x ∗ z1

Suppose x ′ and y ′ are the derivatives of x and y
w.r.t. a common variable. Then the code can be
augmented to compute the derivatives of z1 and z2 :

z1 = x + y

z1 ′ = x ′ + y ′

z2 = x ∗ z1

z2 ′ = x ′ ∗ z1 + x ∗ z1 ′

COMP4075: Lecture 6 – p.30/37

Approaches

• Source-to-source translation

• Overloading of arithmetic operators and
mathematical functions

The following variation is due to Jerzy
Karczmarczuk. Infinite list of derivatives allows
derivatives of arbitrary order to be computed.

COMP4075: Lecture 6 – p.31/37

Functional Automatic Differentiation (1)

Introduce a new numeric type C : value of a
continuously differentiable function at a point
along with all derivatives at that point:

data C = C Double C

valC (C a) = a

derC (C x ′) = x ′

COMP4075: Lecture 6 – p.32/37

Functional Automatic Differentiation (2)

Constants and the variable of differentiation:

zeroC :: C

zeroC = C 0.0 zeroC

constC :: Double → C

constC a = C a zeroC

dVarC :: Double → C

dVarC a = C a (constC 1.0)

COMP4075: Lecture 6 – p.33/37

Functional Automatic Differentiation (3)

Part of numerical instance:

instance Num C where

(C a x ′) + (C b y ′) = C (a + b) (x ′ + y ′)

(C a x ′)− (C b y ′) = C (a − b) (x ′ − y ′)

x@(C a x ′) ∗ y@(C b y ′) =

C (a ∗ b) (x ′ ∗ y + x ∗ y ′)

fromInteger n = constC (fromInteger n)

COMP4075: Lecture 6 – p.34/37

Functional Automatic Differentiation (4)

Computation of y = 3t2 + 7 at t = 2:

t = dVarC 2

y = 3 ∗ t ∗ t + 7

We can now get whichever derivatives we need:

valC y ⇒ 19.0

valC (derC y) ⇒ 12.0

valC (derC (derC y)) ⇒ 6.0

valC (derC (derC (derC y))) ⇒ 0.0

COMP4075: Lecture 6 – p.35/37

Functional Automatic Differentiation (5)

Of course, we’re not limited to picking just one
point. Let tvals be a list of points of interest:

[3 ∗ t ∗ t + 7 | tval ← tvals, let t = dVarC tval]

Or we can define a function:

y :: Double → C

y tval = 3 ∗ t ∗ t + 7

where

t = dVarC tval

COMP4075: Lecture 6 – p.36/37

Reading

• Jerzy Karczmarczuk. Functional
differentiation of computer programs.
Higher-Order and Symbolic Computation,
14(1):35–57, March 2001.

COMP4075: Lecture 6 – p.37/37

	Type Classes
	Haskell Overloading (1)
	Haskell Overloading (2)
	Haskell Overloading (3)
	Haskell Overloading (4)
	The Type Class ensuremath {Conid {Eq}}
	Instances of ensuremath {Conid {Eq}} (1)
	Instances of ensuremath {Conid {Eq}} (2)
	Instances of ensuremath {Conid {Eq}} (3)
	Instances of ensuremath {Conid {Eq}} (4)
	Derived Instances (1)
	Derived Instances (2)
	Class Hierarchy
	Haskell vs. OO Overloading (1)
	Haskell vs. OO Overloading (2)
	Haskell vs. OO Overloading (3)
	Implementation (1)
	Implementation (2)
	Implementation (3)
	Implementation (4)
	Implementation (5)
	Some Basic Haskell Classes (1)
	Some Basic Haskell Classes (2)
	Some Basic Haskell Classes (3)
	A Typing Conundrum (1)
	A Typing Conundrum (2)
	Multi-parameter Type Classes
	Application: Automatic Differentiation
	Automatic Differentiation: Key Idea
	Approaches
	Functional Automatic Differentiation (1)
	Functional Automatic Differentiation (2)
	Functional Automatic Differentiation (3)
	Functional Automatic Differentiation (4)
	Functional Automatic Differentiation (5)
	Reading

