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Type Classes and Patterns

• In Haskell, many functional programming
patterns are captured through specific type
classes.
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Type Classes and Patterns

• In Haskell, many functional programming
patterns are captured through specific type
classes.

• Additionally, the type class mechanism itself
and the fact that overloading is prevalent in
Haskell give raise to other programming
patterns.
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Semigroups and Monoids (1)

Semigroups and monoids are algebraic structures:
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Semigroups and Monoids (1)

Semigroups and monoids are algebraic structures:

• Semigroup: a set (type) S with an associative
binary operation · : S × S → S:

∀a, b, c ∈ S : (a · b) · c = a · (b · c)
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Semigroups and Monoids (1)

Semigroups and monoids are algebraic structures:

• Semigroup: a set (type) S with an associative
binary operation · : S × S → S:

∀a, b, c ∈ S : (a · b) · c = a · (b · c)

• Monoid: a semigroup with an identity element:

∃e ∈ S,∀a ∈ S : e · a = a · e = a
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Semigroups and Monoids (2)

• Semigroups and monoids are patterns that
appear frequently in everyday programming.
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Semigroups and Monoids (2)

• Semigroups and monoids are patterns that
appear frequently in everyday programming.

• Being explicit about when such structures are
used

- makes code clearer

- offer opportunities for reuse
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Semigroups and Monoids (2)

• Semigroups and monoids are patterns that
appear frequently in everyday programming.

• Being explicit about when such structures are
used

- makes code clearer

- offer opportunities for reuse

• The standard Haskell libraries provide type
classes to capture these notions.
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Class Semigroup

Class definition (most important methods):

class Semigroup a where

(⋄) :: a → a → a

sconcat :: NonEmpty a → a

Minimum complete definition: (⋄) (ASCII: <>)
(There is thus a default definition for sconcat .)

NonEmpty is the non-empty list type:

data NonEmpty a = a :| [a ]
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Instances of Semigroup (1)

A list [a ] is a semigroup (for any type a):

instance Semigroup [a ] where

(⋄) = (++)
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Instances of Semigroup (1)

A list [a ] is a semigroup (for any type a):

instance Semigroup [a ] where

(⋄) = (++)

Maybe a is a semigroup if a is one:

instance Semigroup a

⇒ Semigroup (Maybe a) where

Nothing ⋄ y = y

x ⋄ Nothing = x

Just x ⋄ Just y = x ⋄ y
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Instances of Semigroup (2)

Addition and multiplication are associative; a
numeric type with either operation forms a semigroup.
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Instances of Semigroup (2)

Addition and multiplication are associative; a
numeric type with either operation forms a semigroup.

But which one to pick? Both are equally useful!
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Instances of Semigroup (2)

Addition and multiplication are associative; a
numeric type with either operation forms a semigroup.

But which one to pick? Both are equally useful!

Idea:

• Sum a: the semigroup (a, (+))

• Product a: the semigroup (a, (∗))
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Instances of Semigroup (3)

Semigroup instances for Sum a and Product a:

instance Num a ⇒ Semigroup (Sum a) where

(⋄) = (+)

instance Num a ⇒ Semigroup (Product a) where

(⋄) = (∗)
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Instances of Semigroup (4)

Similarly, any type with a total ordering forms a
semigroup with maximum or minimum as the
associative operation:

• Max a: the semigroup (a, max )

• Min a: the semigroup (a, min)

Semigroup instances:

instance Ord a ⇒ Semigroup (Max a) where

(⋄) = max

instance Ord a ⇒ Semigroup (Min a) where

(⋄) = min
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Instances of Semigroup (5)

All products of semigroups are semigroups; e.g.:

instance (Semigroup a,Semigroup b)

⇒ Semigroup (a, b) where

(x , y) ⋄ (x ′, y ′) = (x ⋄ x ′, y ⋄ y ′)
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Instances of Semigroup (5)

All products of semigroups are semigroups; e.g.:

instance (Semigroup a,Semigroup b)

⇒ Semigroup (a, b) where

(x , y) ⋄ (x ′, y ′) = (x ⋄ x ′, y ⋄ y ′)

a → b is a semigroup if the range b is a semigroup:

instance Semigroup b

⇒ Semigroup (a → b) where

f ⋄ g = λx → f x ⋄ g x
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Exercise: Semigroup Instances

What is the value of the following expressions?

[1, 3, 7] ⋄ [2, 4]

Sum 3 ⋄ Sum 1 ⋄ Sum 5

Just (Max 42) ⋄ Nothing ⋄ Just (Max 3)

sconcat (Product 2 :| [Product 3,Product 4])

([1],Product 2) ⋄ ([2, 3],Product 3)

((1:) ⋄ tail) [4, 5, 6]
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Class Monoid

Recall: A monid is a semigroup with an identity
element:

class Semigroup a ⇒ Monoid a where

mempty :: a

mappend :: a → a → a

mappend = (⋄)

mconcat :: [a ] → a

mconcat = foldr mappend mempty

Minimum complete definition: mempty
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Instances of Monoid (1)

A list [a ] is the archetypical example of a monoid:

instance Monoid [a ] where

mempty = [ ]

Any semigroup can be turned into a monoid by
adjoining an identity element:

instance Semigroup a

⇒ Monoid (Maybe a) where

mempty = Nothing
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Instances of Monoid (2)

Monoid instances for Sum a and Product a:

instance Num a ⇒ Monoid (Sum a) where

mempty = Sum 0

instance Num a ⇒ Monoid (Product a) where

mempty = Product 1
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Instances of Monoid (3)

Monoid instances for Min a and Max a:

instance (Ord a,Bounded a) ⇒

Monoid (Min a) where

mempty = maxBound

instance (Ord a,Bounded a) ⇒

Monoid (Max a) where

mempty = minBound
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Instances of Monoid (4)

All products of monoids are monoids; e.g.:

instance (Monoid a,Monoid b)

⇒ Monoid (a, b) where

mempty = (mempty ,mempty)
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Instances of Monoid (4)

All products of monoids are monoids; e.g.:

instance (Monoid a,Monoid b)

⇒ Monoid (a, b) where

mempty = (mempty ,mempty)

a → b is a monoid if the range b is a monoid:

instance Monoid b ⇒ Monoid (a → b) where

mempty = mempty
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Functors (1)

A Functor is a notion that originated in a branch
of mathematics called Category Theory.

However, for our purposes, we can think of
functors as type constructors T (of arity 1) for
which a function map can be defined:

map :: (a → b) → Ta → Tb

that satisfies the following laws:

map id = id

map(f ◦ g) = map f ◦map g
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Functors (2)

Common examples of functors include (but are
not limited to) container types like lists:

mapList :: (a → b) → [a ] → [b ]

mapList [ ] = [ ]

mapList f (x : xs) = f x :mapList f xs
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Functors (3)

And trees; e.g.:

data Tree a = Leaf a

| Node (Tree a) a (Tree a)

mapTree :: (a → b) → Tree a → Tree b

mapTree f (Leaf x ) = Leaf (f x )

mapTree f (Node l x r) = Node (mapTree f l)

(f x )

(mapTree f r)
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Class Functor (1)

Of course, the notion of a functor is captured by
a type class in Haskell:

class Functor f where

fmap :: (a → b) → f a → f b

(<$) :: a → f b → f a

(<$) = fmap ◦ const
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Class Functor (2)

There is also an infix version that can be viewed
as function application lifted over a functor:

(<$>) :: (a → b) → f a → f b

(<$>) = fmap

Compare the standard infix function application
operator:

($) :: (a → b) → a → b
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Class Functor (3)

However, Haskell’s type system is not powerful
enough to enforce the functor laws.
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Class Functor (3)

However, Haskell’s type system is not powerful
enough to enforce the functor laws.

In general, the programmer is responsible for
ensuring that an instance respects all laws
associated with a type class.
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Class Functor (3)

However, Haskell’s type system is not powerful
enough to enforce the functor laws.

In general, the programmer is responsible for
ensuring that an instance respects all laws
associated with a type class.

Note that the type of fmap can be read:

(a → b) → (f a → f b)

That is, we can see fmap as promoting a function
to work in a different context.
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Instances of Functor (1)

As noted, list is a functor:

instance Functor [ ] where

fmap = listMap
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Instances of Functor (1)

As noted, list is a functor:

instance Functor [ ] where

fmap = listMap

Maybe is also a functor:

instance Functor Maybe where

fmap Nothing = Nothing

fmap f (Just x ) = Just (f x )
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Instances of Functor (2)

Container types are in general instances of
functor, including Array :

instance Functor (Array i) where . . .

E.g, given a matrix m :: Array (Int , Int) Double,
we can double all elements:

fmap (∗2) m
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Instances of Functor (3)

As functors are so common, there is a GHC
extension for deriving Functor instances in
standard cases.

For example, the functor instance for our tree
type can be derived:

data Tree a = Leaf a

| Node (Tree a) a (Tree a)

deriving Functor
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Instances of Functor (4)

The type of functions from a given domain is an
example of a functor that is not a container
type. Map is just function composition:

instance Functor ((→) a) where

fmap = (◦)
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Instances of Functor (4)

The type of functions from a given domain is an
example of a functor that is not a container
type. Map is just function composition:

instance Functor ((→) a) where

fmap = (◦)

Note that a curried function type, like

a → b → c = a → (b → c)

thus is a nesting or composition of functors:

(((→) a) (((→) b) c)) = (((→) a) ◦ ((→) b)) c
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Nesting functors (1)

In practice, functors often appear nested inside
other functors, e.g.

mxs :: [Maybe Double ]

Such a structure can of course be processed by
repeated mapping, e.g.:

fmap (fmap (∗2)) mxs

One reading of this is “use fmap to lift (∗2) to
work on Maybe, and then map that over the list”.
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Nesting functors (2)

However, in general f (g a) = (f ◦ g) a, meaning

fmap (fmap (∗2)) = (fmap ◦ fmap) (∗2)

suggesting the following combinator:

(<$$>) :: (Functor f ,Functor g) ⇒

(a → b) → f (g a) → f (g b)

(<$$>) = fmap ◦ fmap

COMP4075: Lecture 7 – p.28/40



Nesting functors (2)

However, in general f (g a) = (f ◦ g) a, meaning

fmap (fmap (∗2)) = (fmap ◦ fmap) (∗2)

suggesting the following combinator:

(<$$>) :: (Functor f ,Functor g) ⇒

(a → b) → f (g a) → f (g b)

(<$$>) = fmap ◦ fmap

This allows us to simplify fmap (fmap (∗2)) mxs to

(∗2) <$$> mxs
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Nesting functors (3)

Note that the composition of fmaps is mirrored by
composition of functors at the type level:

[Maybe (a)] = [ ] (Maybe a) = ([ ] ◦Maybe) a

This can be generalized to any number levels; e.g.

(<$$$>) = fmap ◦ fmap ◦ fmap

(∗2) <$$$> [ [ [1, 2], [3]], [ [4]], [ [5]]]

⇒ [ [ [2, 4], [6]], [ [8]], [ [10 ]]]

Data.Functor .Syntax defines <$$>, <$$$> . . .
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Nesting functors (4)

Note that we also could have defined:

(<$$>) = fmap fmap fmap

Why?

Exploiting that curried function types are composed
functors, <$$>, <$$$> . . . can compose functions
where the second function has arity 2, 3, . . . :

f :: Bool → Double → Int → Double

(>0) <$$$> f :: Bool → Double → Int → Bool

This is often quite handy in practice.
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Class Foldable (1)

Class of data structures that can be folded to a
summary value.

Many methods; minimal instance foldMap, foldr :

class Foldable t where

fold ::Monoid m ⇒ t m → m

foldMap ::Monoid m ⇒ (a → m) → t a → m

foldr :: (a → b → b) → b → t a → b

foldr ′ :: (a → b → b) → b → t a → b

foldl :: (b → a → b) → b → t a → b

foldl ′ :: (b → a → b) → b → t a → b
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Class Foldable (2)

(continued)

foldr1 :: (a → a → a) → t a → a

foldl1 :: (a → a → a) → t a → a

toList :: t a → [a ]

null :: t a → Bool

length :: t a → Int

elem :: Eq a ⇒ a → t a → Bool

(Note that length should be understood as size.)
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Class Foldable (3)

(continued)

maximum :: Ord a ⇒ t a → a

minimum :: Ord a ⇒ t a → a

sum :: Num a ⇒ t a → a

product :: Num a ⇒ t a → a
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Class Foldable (3)

(continued)

maximum :: Ord a ⇒ t a → a

minimum :: Ord a ⇒ t a → a

sum :: Num a ⇒ t a → a

product :: Num a ⇒ t a → a

Note: foldl typically incurs a large space
overhead due to laziness. The version with strict
applictaion of the operator,foldl ′ is typically
preferable.
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Instances of Foldable (1)

All expected instances, e.g.:

• instance Foldable [ ] where . . .

• instance Foldable Maybe where . . .
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Instances of Foldable (1)

All expected instances, e.g.:

• instance Foldable [ ] where . . .

• instance Foldable Maybe where . . .

And GHC extension allows deriving instances in
many cases; e.g.

data Tree a = . . .deriving Foldable
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Instances of Foldable (2)

But there are also some instances that are less
expected, e.g.:

• instance Foldable (Either a) where . . .

• instance Foldable ((, ) a) where . . .
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Instances of Foldable (2)

But there are also some instances that are less
expected, e.g.:

• instance Foldable (Either a) where . . .

• instance Foldable ((, ) a) where . . .

This has some arguably odd consequences:

length (1, 2) ⇒ 1

sum (1, 2) ⇒ 2

length (Left 1) ⇒ 0

length (Right 2) ⇒ 1
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Example: Folding Over a Tree (1)

Consider:

data Tree a = Empty

| Node (Tree a) a (Tree a)

deriving (Show ,Eq)
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Example: Folding Over a Tree (1)

Consider:

data Tree a = Empty

| Node (Tree a) a (Tree a)

deriving (Show ,Eq)

Let us make it an instance of Foldable:

instance Foldable Tree where

foldMap f Empty = mempty

foldMap f (Node l a r) =

foldMap f l ⋄ f a ⋄ foldMap f r
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Example: Folding Over a Tree (2)

We wish to compute the sum and max over a
tree of Int . One way:

sumMax :: Tree Int → (Int , Int)

sumMax t = (foldl (+) 0 t , foldl max minBound t)
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Example: Folding Over a Tree (2)

We wish to compute the sum and max over a
tree of Int . One way:

sumMax :: Tree Int → (Int , Int)

sumMax t = (foldl (+) 0 t , foldl max minBound t)

Another way, with a single traversal:

sumMax :: Tree Int → (Int , Int)

sumMax t = (sm,mx )

where

(Sum sm,Max mx ) =

foldMap (λn → (Sum n,Max n)) t
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Example: Folding Over a Tree (3)

The latter can be generalized to e.g. computing
the sum, product, min, and max in a single
traversal:

foldMap

(λn → (Sum n,Product n,Min n,Max n))

t
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Aside: Foldable?

Note that the kind of “folding” captured by the
class Foldable in general makes it impossible to
recover the structure over which the “folding”
takes place.
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Aside: Foldable?

Note that the kind of “folding” captured by the
class Foldable in general makes it impossible to
recover the structure over which the “folding”
takes place.

Such an operation is also known as “reduce” or
“crush”, and some authors prefer to reserve the
term “fold” for catamorphisms, where a separate
combining function is given for each constructor,
making it possible to recover the structure.
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Aside: Foldable?

Note that the kind of “folding” captured by the
class Foldable in general makes it impossible to
recover the structure over which the “folding”
takes place.

Such an operation is also known as “reduce” or
“crush”, and some authors prefer to reserve the
term “fold” for catamorphisms, where a separate
combining function is given for each constructor,
making it possible to recover the structure.

One might thus argue that Reducible or Crushable
would have been a more precise name.
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MapReduce

Functional mapping and folding (reducing) inspired
the MapReduce programming model; e.g.

• Google’s original MapReduce framework

• Apache Hadoop
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MapReduce

Functional mapping and folding (reducing) inspired
the MapReduce programming model; e.g.

• Google’s original MapReduce framework

• Apache Hadoop

Functional mapping and folding with associative
operator (semigroup) is amenable to parallelization
and distribution.
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MapReduce

Functional mapping and folding (reducing) inspired
the MapReduce programming model; e.g.

• Google’s original MapReduce framework

• Apache Hadoop

Functional mapping and folding with associative
operator (semigroup) is amenable to parallelization
and distribution.

However, achieving scalability in practice
required both careful engineering of the
frameworks as such, and a good understanding
of how to use them on part of the user.
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