
COMP4075: Lecture 8
Introduction to Monads

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 8 – p.1/37

A Blessing and a Curse

• The BIG advantage of pure functional
programming is

“everything is explicit;”

i.e., flow of data manifest, no side effects.
Makes it a lot easier to understand large
programs.

• The BIG problem with pure functional
programming is

“everything is explicit.”

Can add a lot of clutter, make it hard to
maintain code

COMP4075: Lecture 8 – p.2/37

Conundrum

“Shall I be pure or impure?” (Wadler, 1992)

• Absence of effects

- facilitates understanding and reasoning

- makes lazy evaluation viable

- allows choice of reduction order, e.g. parallel

- enhances modularity and reuse.

• Effects (state, exceptions, . . . ) can

- help making code concise

- facilitate maintenance

- improve the efficiency.
COMP4075: Lecture 8 – p.3/37

Answer to Conundrum: Monads (1)

• Monads bridges the gap: allow effectful
programming in a pure setting.

• Key idea: Computational types: an object of
type MA denotes a computation of an
object of type A.

• Thus we shall be both pure and impure,
whatever takes our fancy!

• Monads originated in Category Theory.

• Adapted by

- Moggi for structuring denotational semantics

- Wadler for structuring functional programs
COMP4075: Lecture 8 – p.4/37



Answer to Conundrum: Monads (2)

Monads

• promote disciplined use of effects since the
type reflects which effects can occur;

• allow great flexibility in tailoring the effect
structure to precise needs;

• support changes to the effect structure with
minimal impact on the overall program structure;

• allow integration into a pure setting of real
effects such as

- I/O

- mutable state.
COMP4075: Lecture 8 – p.5/37

This Lecture

Pragmatic introduction to monads:

• Effectful computations

• Identifying a common pattern

• Monads as a design pattern

COMP4075: Lecture 8 – p.6/37

Example 1: A Simple Evaluator

data Exp = Lit Integer

| Add Exp Exp

| Sub Exp Exp

| Mul Exp Exp

| Div Exp Exp

eval :: Exp → Integer

eval (Lit n) = n

eval (Add e1 e2 ) = eval e1 + eval e2

eval (Sub e1 e2 ) = eval e1 − eval e2

eval (Mul e1 e2 ) = eval e1 ∗ eval e2

eval (Div e1 e2 ) = eval e1 ‘div ‘ eval e2
COMP4075: Lecture 8 – p.7/37

Making the Evaluator Safe (1)

data Maybe a = Nothing | Just a

safeEval :: Exp → Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2 ) =

case safeEval e1 of

Nothing → Nothing

Just n1 → case safeEval e2 of

Nothing → Nothing

Just n2 → Just (n1 + n2 )

COMP4075: Lecture 8 – p.8/37



Making the Evaluator Safe (2)

safeEval (Sub e1 e2 ) =

case safeEval e1 of

Nothing → Nothing

Just n1 → case safeEval e2 of

Nothing → Nothing

Just n2 → Just (n1 − n2 )

COMP4075: Lecture 8 – p.9/37

Making the Evaluator Safe (3)

safeEval (Mul e1 e2 ) =

case safeEval e1 of

Nothing → Nothing

Just n1 → case safeEval e2 of

Nothing → Nothing

Just n2 → Just (n1 ∗ n2 )

COMP4075: Lecture 8 – p.10/37

Making the Evaluator Safe (4)

safeEval (Div e1 e2 ) =

case safeEval e1 of

Nothing → Nothing

Just n1 → case safeEval e2 of

Nothing → Nothing

Just n2 →

if n2 ≡ 0

then Nothing

else Just (n1 ‘div ‘ n2 )

COMP4075: Lecture 8 – p.11/37

Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:

• Sequencing of evaluations (or
computations).

• If one evaluation fails, fail overall.

• Otherwise, make result available to following
evaluations.

COMP4075: Lecture 8 – p.12/37



Sequencing Evaluations

evalSeq ::Maybe Integer

→ (Integer → Maybe Integer)

→ Maybe Integer

evalSeq ma f = case ma of

Nothing → Nothing

Just a → f a

COMP4075: Lecture 8 – p.13/37

Exercise 1: Refactoring safeEval

Rewrite safeEval , case Add , using evalSeq:

safeEval (Add e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 + n2)

evalSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a

COMP4075: Lecture 8 – p.14/37

Exercise 1: Solution

safeEval :: Exp → Maybe Integer

safeEval (Add e1 e2 ) =

evalSeq (safeEval e1 )

(λn1 → evalSeq (safeEval e2 )

(λn2 → Just (n1 + n2 )))

or
safeEval :: Exp → Maybe Integer

safeEval (Add e1 e2 ) =

safeEval e1 ‘evalSeq ‘ λn1 →

safeEval e2 ‘evalSeq ‘ λn2 →

Just (n1 + n2 )
COMP4075: Lecture 8 – p.15/37

Refactored Safe Evaluator (1)

safeEval :: Exp → Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2 ) =

safeEval e1 ‘evalSeq ‘ λn1 →

safeEval e2 ‘evalSeq ‘ λn2 →

Just (n1 + n2 )

safeEval (Sub e1 e2 ) =

safeEval e1 ‘evalSeq ‘ λn1 →

safeEval e2 ‘evalSeq ‘ λn2 →

Just (n1 − n2 )

COMP4075: Lecture 8 – p.16/37



Refactored Safe Evaluator (2)

safeEval (Mul e1 e2 ) =

safeEval e1 ‘evalSeq ‘ λn1 →

safeEval e2 ‘evalSeq ‘ λn2 →

Just (n1 ∗ n2 )

safeEval (Div e1 e2 ) =

safeEval e1 ‘evalSeq ‘ λn1 →

safeEval e2 ‘evalSeq ‘ λn2 →

if n2 ≡ 0

then Nothing

else Just (n1 ‘div ‘ n2 )

COMP4075: Lecture 8 – p.17/37

Maybe Viewed as a Computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a

that may fail.

• When sequencing possibly failing
computations, a natural choice is to fail
overall once a subcomputation fails.

• I.e. failure is an effect, implicitly affecting
subsequent computations.

• Let’s generalize and adopt names reflecting
our intentions.

COMP4075: Lecture 8 – p.18/37

Maybe Viewed as a Computation (2)

Successful computation of a value:

mbReturn :: a → Maybe a

mbReturn = Just

Sequencing of possibly failing computations:

mbSeq ::Maybe a → (a → Maybe b) → Maybe b

mbSeq ma f = case ma of

Nothing → Nothing

Just a → f a

COMP4075: Lecture 8 – p.19/37

Maybe Viewed as a Computation (3)

Failing computation:

mbFail ::Maybe a

mbFail = Nothing

COMP4075: Lecture 8 – p.20/37



The Safe Evaluator Revisited

safeEval :: Exp → Maybe Integer

safeEval (Lit n) = mbReturn n

safeEval (Add e1 e2 ) =

safeEval e1 ‘mbSeq ‘ λn1 →

safeEval e2 ‘mbSeq ‘ λn2 →

mbReturn (n1 + n2 )

. . .

safeEval (Div e1 e2 ) =

safeEval e1 ‘mbSeq ‘ λn1 →

safeEval e2 ‘mbSeq ‘ λn2 →

if n2 ≡ 0 then mbFail else mbReturn (n1 ‘div ‘ n2 )))
COMP4075: Lecture 8 – p.21/37

Example 2: Numbering Trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a → Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a → Int → (Tree Int , Int)

ntAux (Leaf ) n = (Leaf n,n + 1)

ntAux (Node t1 t2 ) n =

let (t1 ′,n ′) = ntAux t1 n

in let (t2 ′,n ′′) = ntAux t2 n ′

in (Node t1 ′ t2 ′,n ′′)

COMP4075: Lecture 8 – p.22/37

Observations

• Repetitive pattern: threading a counter
through a sequence of tree numbering
computations.

• It is very easy to pass on the wrong version of
the counter!

Can we do better?

COMP4075: Lecture 8 – p.23/37

Stateful Computations (1)

• A stateful computation consumes a state
and returns a result along with a possibly
updated state.

• The following type synonym captures this
idea:

type S a = Int → (a, Int)

(Only Int state for the sake of simplicity.)

• A value (function) of type S a can now be
viewed as denoting a stateful computation
computing a value of type a.

COMP4075: Lecture 8 – p.24/37



Stateful Computations (2)

• When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

• I.e. state updating is an effect, implicitly
affecting subsequent computations.
(As we would expect.)

COMP4075: Lecture 8 – p.25/37

Stateful Computations (3)

Computation of a value without changing the
state (For ref.: S a = Int → (a, Int)):

sReturn :: a → S a

sReturn a = λn → (a,n)

Sequencing of stateful computations:

sSeq :: S a → (a → S b) → S b

sSeq sa f = λn →

let (a,n ′) = sa n

in f a n ′

COMP4075: Lecture 8 – p.26/37

Stateful Computations (4)

Reading and incrementing the state
(For ref.: S a = Int → (a, Int)):

sInc :: S Int

sInc = λn → (n,n + 1)

COMP4075: Lecture 8 – p.27/37

Numbering trees revisited

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a → Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a → S (Tree Int)

ntAux (Leaf ) =

sInc ‘sSeq ‘ λn → sReturn (Leaf n)

ntAux (Node t1 t2 ) =

ntAux t1 ‘sSeq ‘ λt1 ′ →

ntAux t2 ‘sSeq ‘ λt2 ′ →

sReturn (Node t1 ′ t2 ′)
COMP4075: Lecture 8 – p.28/37



Observations

• The “plumbing” has been captured by the
abstractions.

• In particular:

- counter no longer manipulated directly

- no longer any risk of “passing on” the
wrong version of the counter!

COMP4075: Lecture 8 – p.29/37

Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.

• Both examples could be neatly structured by
introducing:

- A type denoting computations

- A function constructing an effect-free
computation of a value

- A function constructing a computation by
sequencing computations

• In fact, both examples are instances of the
general notion of a MONAD.

COMP4075: Lecture 8 – p.30/37

Monads in Functional Programming

A monad is represented by:

• A type constructor

M :: ∗ → ∗

M T represents computations of value of type T .

• A polymorphic function

return :: a → M a

for lifting a value to a computation.

• A polymorphic function

(>>=) ::M a → (a → M b) → M b

for sequencing computations.
COMP4075: Lecture 8 – p.31/37

Exercise 2: join and fmap

Equivalently, the notion of a monad can be
captured through the following functions:

return :: a → M a

join :: (M (M a)) → M a

fmap :: (a → b) → M a → M b

join “flattens” a computation, fmap “lifts” a
function to map computations to computations.

Define join and fmap in terms of (>>=) (and
return), and (>>=) in terms of join and fmap.

(>>=) ::M a → (a → M b) → M b

COMP4075: Lecture 8 – p.32/37



Exercise 2: Solution

join ::M (M a) → M a

join mm = mm >>= id

fmap :: (a → b) → M a → M b

fmap f m = m >>= return ◦ f

(>>=) ::M a → (a → M b) → M b

m >>= f = join (fmap f m)

COMP4075: Lecture 8 – p.33/37

Monad laws

Additionally, the following laws must be satisfied:

return x >>= f = f x

m >>= return = m

(m >>= f )>>= g = m >>= (λx → f x >>= g)

I.e., return is the right and left identity for (>>=),
and (>>=) is associative.

COMP4075: Lecture 8 – p.34/37

Exercise 3: The Identity Monad

The Identity Monad can be understood as
representing effect-free computations:

type I a = a

1. Provide suitable definitions of return and
(>>=).

2. Verify that the monad laws hold for your
definitions.

COMP4075: Lecture 8 – p.35/37

Exercise 3: Solution

return :: a → I a

return = id

(>>=) :: I a → (a → I b) → I b

m >>= f = f m

(Or: (>>=) = flip ($))

Simple calculations verify the laws, e.g.:

return x >>= f = id x >>= f

= x >>= f

= f x

COMP4075: Lecture 8 – p.36/37



Reading

• Philip Wadler. The Essence of Functional

Programming. Proceedings of the 19th ACM

Symposium on Principles of Programming Languages

(POPL’92), 1992.

• Nick Benton, John Hughes, Eugenio Moggi. Monads

and Effects. In International Summer School on

Applied Semantics 2000, Caminha, Portugal, 2000.

• All About Monads.

http://www.haskell.org/all_about_monads

COMP4075: Lecture 8 – p.37/37


	A Blessing and a Curse
	Conundrum
	Answer to Conundrum: Monads (1)
	Answer to Conundrum: Monads (2)
	This Lecture
	Example 1: A Simple Evaluator
	Making the Evaluator Safe (1)
	Making the Evaluator Safe (2)
	Making the Evaluator Safe (3)
	Making the Evaluator Safe (4)
	Any Common Pattern?
	Sequencing Evaluations
	Exercise 1: Refactoring ensuremath {Varid {safeEval}}
	Exercise 1: Solution
	Refactored Safe Evaluator (1)
	Refactored Safe Evaluator (2)
		exttt {Maybe} Viewed as a Computation (1)
		exttt {Maybe} Viewed as a Computation (2)
		exttt {Maybe} Viewed as a Computation (3)
	The Safe Evaluator Revisited
	Example 2: Numbering Trees
	Observations
	Stateful Computations (1)
	Stateful Computations (2)
	Stateful Computations (3)
	Stateful Computations (4)
	Numbering trees revisited
	Observations
	Comparison of the examples
	Monads in Functional Programming
	Exercise 2: ensuremath {Varid {join}} and ensuremath {Varid {fmap}}
	Exercise 2: Solution
	Monad laws
	Exercise 3: The Identity Monad
	Exercise 3: Solution
	Reading

