Henrik Nilsson

University of Nottingham, UK

Monads in Haskell (1)

COMP4075: Lecture 9 —p.1/37

In Haskell, the notion of a monad is captured by
a Type Class. In principle (but not quite from

GHC 7.8 onwards):

class Monad m where
return ::a — m a
(>=) =ma—(a—mb —-mbd

Allows names of the common functions to be
overloaded and sharing of derived definitions.

COMP4075: Lecture 9 —p.3/37

This Lecture

« Monads in Haskell
« The Haskell Monad Class Hierarchy

« Some Standard Monads and Library
Functions

COMP4075: Lecture 9 —p.2/37

Monads in Haskell (2)

The Haskell monad class has two further
methods with default definitions:

(>):ma—>mb—mb
m>k=m>=_—k
fail .- String — m a

fail s = error s

(However, fail will likely be moved into a separate
class MonadFail in the future.)

COMP4075: Lecture 9 —p.4/37

The Maybe Monad in Haskell

instance Monad Maybe where
return = Just
Nothing >= _ = Nothing
(Just z)>=f=fz

COMP4075: Lecture 9 —p.5/37

The Monad Type Class Hierachy (2)

For example, fmap can be defined in terms of >=
and return, demonstrating that a monad is a functor:

fmap f m = m >= Az — return (f z)

A consequence of this class hierarchy is that to
make some T an instance of Monad, an instance
of T for both Functor and Applicative must also
be provided.

Note: Not a mathematical necessity, but a result
of how these notions are defined in Haskell at
present. E.g. monads can be understood in isolation.

COMP4075: Lecture 9 —p.7/37

The Monad Type Class Hierachy (1)

Monads are mathematically related to two other
notions:

* Functors
« Applicative Functors (or just Applicatives)

Every monad is an applicative functor, and every
applicative functor (and thus monad) is a functor.
Class hierarchy:

class Functor f where. ..

class Functor f = Applicative f where. ..

class Applicative m = Monad m where. ..

COMP4075: Lecture 9 —p.6/37

Applicative Functors (1)

An applicative functor is a functor with
application, providing operations to:

« embed pure expressions (pure), and

« sequence computations and combine their
results (<)

class Functor f = Applicative f where
pure ::a— f a
(c>)uf(a—=b)—>fa—fb
() ofa—fb—fb
(<) =fa—fb—=>fa

COMP4075: Lecture 9 —p.8/37

Applicative Functors (2)

Applicative Functors (3)

« Like monads, applicative functors is a notion

) Laws:
of computation.
- The key difference is that the result of one pure id <> v = v
computation is not made available to pure (0) <& u <> v <> w = u < (v <& W)
subsequent computations. As a result: pure f <& pure x = pure (f)
- The structure of a computation is static. u <> purey = pure ($y) <& u
- Scope for running computations in o
parallel Default definitions:
- Whether the computations actually can be u ®> v = pure (const id) <& u <& v
carried in parallel depends on what the specific U <k v = pure const <> u <& v

effects of the applicative in question are.

SoupaOTS tecuresmpest _

Instances of Applicative Class Alternative

COMP4075: Lecture 9 — p.10/37

The class Alternative is @ monoid on applicative

. _ functors:
instance Applicative || where

pure ¢ = [z] empty :: f a
fs<exs=|[fx|f+ fs,x < x5]

some :f a— f|al

class Applicative f = Alternative f where

(<) =fa—=fa—fa

instance Applicative Maybe where many = f a — f [a]
pure = Just some v = pure (1) <& v <& many v
Just f <& m = fmap f m many v = some v <|> pure |]
Nothing <& _ = Nothing

<|> can be understood as “one or the other”, some

as “at least one”. and many as “zero or more”.

COMP4075: Lecture 9 —p.11/37

COMP4075: Lecture 9 —p.12/37

Instances of Alternative

instance Alternative || where

empty = (]
(<I>) = (#)

instance Alternative Maybe where
empty = Nothing
Nothing <|>r =r
[<|>_=1

COMP4075: Lecture 9 —p.13/37

Example: Applicative Parser (2)

Syntax for a language fragment:

command — 1f expr then command else command

| begin { command ; } end

Abstract syntax:

data Command = If Expr Command Command

| Block [Command |
Recognising terminals:

kwd, symb :: String — Parser ()

COMP4075: Lecture 9 - p.15/37

Example: Applicative Parser (1)

Applicative functors are frequently used in the
context of parsing combinators. In fact, that is
where their origin lies.

A Parser computation allows reading of input,
fails if input cannot be parsed, and supports
trying alternatives:

instance Applicative Parser where. ..
instance Alternative Parser where. . ..

Example: Applicative Parser (3)

command :: Parser Command
command =
pure If
< kwd "if" <& expr
< kwd "then" <& command
< kwd "else" <& command
<|> pure Block
< kwd "begin"
<> many (command <« symb "; ")
< kwd "end"

COMP4075: L

COMP4075: Lecture 9 — p.14/37

ecture 9 — p.16/37

Applicative Functors and Monads Exercise: A State Monad in Haskell

Recall that a type Int — (a, Int) can be viewed

A requirement is return = pure.
as a state monad.

In fact, the Monad class provides a default

definition of return defined that way: Haskell 2010 does not permit type synonyms to

be instances of classes. Hence we have to

class Applicative m = Monad m where define a new type:
return i a = m a newtype S a = S {unS :: (Int — (a, Int))}
return = pure
(>=)ima—(a—mb)—mb Thus: unS :: S a — (Int — (a, Int))

Provide a Functor, Applicative, and Monad
instance for S.

Solution: Functor Instance Solution: Applicative Instance
instance Functor S where instance Applicative S where
fmap f sa=S5% s — pure a = S $ As = (a,s)
let sf <> sa=S5%X\s —
(a,s") = unS sa s let
in (f,s') =unS sf s
(f a, 5/) in

unS (fmap f sa) s’

_ conpaTE teeuresmRes _ coupaaTE Fecure s ezt

Solution: Monad Instance

instance Monad S where
m>=f=8%\s —
let (a,s’) = unS m s

in unS (f a) s

(Using the default definition return = pure.)

The Reader Monad

Computation in an environment:

instance Monad ((—) e) where
return a = const a

m>=f=Xe—f(me)e
getEnv i ((—) e) e
getEnv = id

_ oS teeuresmpET

The List Monad

Computation with many possible results,
“‘nondeterminism”:

instance Monad || where
return a = |a)

m >= f = concat (map f m)

fail s =1]
Example: Result:
z <+ [1,2] [(1,7a"),(1,"b"),

y(_[laljlbl]

(2’ Ial)’(2) Ibl)
return (z,y)

—

_ NPT Fecuresmpest

Monad-specific Operations (1)

To be useful, monads need to be equipped with

additional operations specific to the effects in
question. For example:

fail :: String — Maybe a
fail s = Nothing
catch :: Maybe a — Maybe a — Maybe a
ml ‘catch' m2 =
case ml of
Just — — ml
Nothing — m2

_ NPT FecuresmpET

Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int — S ()
set a =S8 (A_— ((),a))

get 2 S Int
get =S (As = (s,5))

Moreover, need to “run” a computation. E.g.:

runS :: S a — a
runS m = fst (unS m 0)

COMP4075: Lecture 9 — p.25/37

The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

ETD1

€IP2
return exps

is syntactic sugar for
exp; S=A_ —
expy S= A_ —
return erps

COMP4075: Lecture 9 — p.27/37

The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do
a <— erp;
b < exp,
return exps
is syntactic sugar for
exp; >= \a —
expy >= Ab —
return exps

Note: a in scoie in_ezp,, a and b in exp;.

The do-notation (3)

A let-construct is also provided:
do
let a = exp,
b = exp,
return exps
is equivalent to
do
a < return exp,
b < return exp,
return exps

_ oS Feauresmpzest

Numbering Trees in do-notation

numberTree t = runS (ntAuz t)
where
ntAuz :: Tree a — S (Tree Int)
ntAuz (Leaf _) = do
n < get
set (n+1)
return (Leaf n)
ntAux (Node t1 t2) = do
t1" + ntAux t1
t2' < ntAuzx t2
return (Node t1’ t2")

Applicative do-notation (2)

For example, an applicative parser:

commandlf :: Parser Command
commandlf =

kwd "if"

¢ expr

kwd "then"

t < command

kwd "else"

e <— command

return (If ¢t e)

COMP4075: Lecture 9 — p.29/37

COMP4075: Lecture 9 —p.31/37

Applicative do-notation (1)

A variation of the do-notation is also available for
applicatives:
do
a < expy
b < exp,
return (...a...b...)

Note that the bound variables may only be used
in the return-expression, or the code becomes
monadic.

In this case, a must not occur in exp,.

COMP4075: Lecture 9 — p.30/37

Monadic Utility Functions

Some monad utilities:

sequence :: Monad m = [m a] — m [a]

sequence_:: Monad m = [m a] — m ()

mapM :: Monad m = (a — m b) — [a] — m [b]

mapM _ :: Monad m = (a — m b) = [a] = m ()

when :: Monad m = Bool — m () — m ()

foldM :: Monad m =
(a—>b—>ma)—a—[b]l>ma

liftM :: Monad m = (a — b) > ma—mb

LftM2 . Monad m =
(a—>b—=¢c)—>ma—>mb—>mc

COMP4075: Lecture 9 - p.32/37

The Haskell 10 Monad (1) The Haskell 10 Monad (2)

In Haskell, 10 is handled through the 10 monad.
IO is abstract! Conceptually:

newtype [0 a = [0 (World — (a, World))

10 essentially provides all effects of typical
imperative languages. Besides input/output:

Some operations: « Pointers and imperative state (through IORef)
putChar :: Char — 10 () + Raising and handling exceptions
putStr 2 String — 10 () « Concurrency

putStrLn 2 String — 10 ()
getChar 10 Char
getLine :: 10 String 10 is sometimes referred to as the “sin bin”!

getContents :: IO String

« Foreign function interface

The ST Monad: “Real” State ST vs 10

The ST monad (common Haskell extension) Why use ST if 10 also gives access to

provides real, imperative state behind the scenes imperative state?

to allow efficient implementation of imperative .

algorithms: P P « ST much more focused: provides only state,

' not a lot more besides.

data ST s a -- abstract - ST computations can be run safely inside
instance Monad (ST s) pure code.

newSTRef ::s ST a (STRef s a)
readSTRef :: STRef s a — ST s a
writeSTRef :: STRef s a — a — ST s () unsafePerformlIO :: 10 a — a

runST :: (forall s . st s a) = a

It is possible to run IO comp. inside pure code:

But make sure you know what you are doing!

COMP4075: Lecture 9 - p.36/37

COMP4075: Lecture 9 — p.35/37

Reading

* Philip Wadler. The Essence of Functional
Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL92), 1992.

* Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

_ SoupAOTS tecure s mpent

	This Lecture
	Monads in Haskell (1)
	Monads in Haskell (2)
	The ensuremath {Conid {Maybe}} Monad in Haskell
	The Monad Type Class Hierachy (1)
	The Monad Type Class Hierachy (2)
	Applicative Functors (1)
	Applicative Functors (2)
	Applicative Functors (3)
	Instances of ensuremath {Conid {Applicative}}
	Class ensuremath {Conid {Alternative}}
	Instances of ensuremath {Conid {Alternative}}
	Example: Applicative Parser (1)
	Example: Applicative Parser (2)
	Example: Applicative Parser (3)
	Applicative Functors and Monads
	Exercise: A State Monad in Haskell
	Solution: ensuremath {Conid {Functor}} Instance
	Solution: ensuremath {Conid {Applicative}} Instance
	Solution: ensuremath {Conid {Monad}} Instance
	The List Monad
	The Reader Monad
	Monad-specific Operations (1)
	Monad-specific Operations (2)
	The ensuremath {mathbf {do}}-notation (1)
	The ensuremath {mathbf {do}}-notation (2)
	The ensuremath {mathbf {do}}-notation (3)
	Numbering Trees in ensuremath {mathbf {do}}-notation
	Applicative ensuremath {mathbf {do}}-notation (1)
	Applicative ensuremath {mathbf {do}}-notation (2)
	Monadic Utility Functions
	The Haskell IO Monad (1)
	The Haskell IO Monad (2)
	The ST Monad: ``Real'' State
	ensuremath {Conid {ST}} vs ensuremath {Conid {IO}}
	Reading

