This Lecture

» Monads in Haskell
« The Haskell Monad Class Hierarchy

- Some Standard Monads and Library
Henrik Nilsson Functions

University of Nottingham, UK

COMP075: Lecture § - p.1/37 COMPA075: Lecture 9 - p2/37

Monads in Haskell (2) The Maybe Monad in Haskell

The Haskell monad class has two further

methods with default definitions: instance Monad Maybe where

return = Just
Nothing >= _ = Nothing
(Justz)>=f=fu

(>):ma—mb—mb
m>k=m>=_—k
fail :: String — m a

fail s = error s

(However, fail will likely be moved into a separate
class MonadFail in the future.)

COMPA07S: Locture 9 - p.437

COMPA07S: Lecture 9 - p.5/37

The Monad Type Class Hierachy (2)

For example, fmap can be defined in terms of >=
and return, demonstrating that a monad is a functor:

Applicative Functors (1)

An applicative functor is a functor with
application, providing operations to:

fmap fm = m >= Az — return (f) - embed pure expressions (pure), and

+ sequence computations and combine their

A consequence of this class hierarchy is that to
results (<)

make some T an instance of Monad, an instance
of T for both Functor and Applicative must also

. class Functor f = Applicative f where
be provided.

pure :a—f a
(<>)uf(a—=b)—=>fa—=>fDb
() fa—=fb—=fDb

(<) ufa—=fb—=fa

Note: Not a mathematical necessity, but a result
of how these notions are defined in Haskell at
present. E.g. monads can be understood in isolation.

COMPA075: Lecture § - p.7/37 COMPA075: Lecture 9 - p/37

Monads in Haskell (1)

In Haskell, the notion of a monad is captured by
a Type Class. In principle (but not quite from
GHC 7.8 onwards):

class Monad m where
return ::a — m a
(>=) sma—(a—=mb) —mb

Allows names of the common functions to be
overloaded and sharing of derived definitions.

COMP4OTS: Lecture 9 -p3a7

The Monad Type Class Hierachy (1)

Monads are mathematically related to two other
notions:

« Functors
« Applicative Functors (or just Applicatives)
Every monad is an applicative functor, and every
applicative functor (and thus monad) is a functor.
Class hierarchy:
class Functor f where. ..
class Functor f = Applicative f where. ..
class Applicative m = Monad m where. ..

COMPA0T7S: Lacture § - p.637

Applicative Functors (2)

« Like monads, applicative functors is a notion
of computation.

- The key difference is that the result of one
computation is not made available to
subsequent computations. As a result:
- The structure of a computation is static.
- Scope for running computations in
parallel.
- Whether the computations actually can be
carried in parallel depends on what the specific
effects of the applicative in question are.

COMP4OTS: Lecture 9 -p.937

Applicative Functors (3) Instances of Applicative Class Alternative

The class Alternative is @ monoid on applicative

Laws: . o functors:
instance Applicative] where

pure id <&>v = v pure = [z]
pure (0) <> u <> v <& w = u < (V<& w) s as=fa|f <« fs,z ¢ a5
pure f <& pure x = pure (f z)

class Applicative f = Alternative f where
empty :: f a
(<) =fa—=fa—fa
some i f a— f|a]

u < pure y = pure ($y) < u instance Applicative Maybe where many : f a — f [a]
Default definitions: pure = Just some v = pure (1) <& v <& many v
w0 = pure (const id) <& u <> v Justf <> m = fmap‘f m many v = some v <|> pure []
Nothing <> _ = Nothing

U <& v = pure const <& u <& v <[> can be understood as “one or the other”, some

as “at least one”, and many as “zero or more”.

‘COMPA07S: Lecture 9 ~p.11/37 COMPA07S: Lecture 9 - p 12137

_ conmT e e 0%

Instances of Alternative Example: Applicative Parser (1) Example: Applicative Parser (2)

Applicative functors are frequently used in the Syntax for a language fragment:

instance Alternative [| where context of parsing combinators. In fact, that is .
empty = H where their origin lies command — if expr then command else command
_ ’ begin { command ; } end
(<}>) = (4) A Parser computation allows reading of input,
fails if input cannot be parsed, and supports Abstract syntax:
instance Alternative Maybe where trying alternatives:
_) data Command = If Expr Command Command
empty = Nothing . I
; instance Applicative Parser where. .. | Block [Command]
Nothing <[> r = instance Alternative Parser where . .. o)
l <>_=1 Recognising terminals:
kwd, symb :: String — Parser ()
Example: Applicative Parser (3) Applicative Functors and Monads Exercise: A State Monad in Haskell
command :: Parser Command A requirement is refurn — pure. Recall that a type Int — (a, Int) can be viewed
command = as a state monad.

In fact, the Monad class provides a default
pure If definition of return defined that way:
< kwd "if" <& expr

Haskell 2010 does not permit type synonyms to
be instances of classes. Hence we have to

< kwd "then" <& command class Applicative m = Monad m where define a new type:

< kwd "else" < command return a = m a newtype S a = S {unS :: (Int — (a, Int)) }
<|> pure Block return = pure

<« kwd "begin" (>=)ima—(a—>mb)—>mb Thus: unS :: S a — (Int — (a, Int))

<> many (command <« symb "; ") Provide a Functor, Applicative, and Monad

< kwd "end" instance for S.

‘COMPAO7S: Lecture 9 ~p.17/37 COMPAO7S: Lecture 9 - p 13737

_ conmT e e

Solution: Functor Instance

instance Functor S where
fmap f sa=S53% s —
let
(a,s') =unS sa s
in

(fa,s)

COMPA075: Lecture § - p.19/37

The List Monad

Computation with many possible results,
“nondeterminism”:

instance Monad [] where
return a = [a]

m >= f = concat (map f m)

fail s =]
Example: Result:
z<—[172] [(17’a,)7(1’,b’)7

y(_[lalylbl}

(2,7a%),(2,70")]
return (z,y)

COMPA075: Locture 9 - p.22137

Monad-specific Operations (2)

Typical operations on a state monad:

set::Int — S ()
seta=58 (A —((),a))
get:: S Int

get =5 (As = (s,9))

Moreover, need to “run” a computation. E.g.:

runS S a— a
runS m = fst (unS m 0)

COMPA075: Lecture 9 - p 25737

Solution: Applicative Instance

instance Applicative S where
pure a = S $ As = (a,s)
sf <> sa=5%)\s —
let
(f, ") =unS sf s

m

unS (fmap f sa) s’

‘COMP407S: Lecture 9 - p20/37

The Reader Monad

Computation in an environment:

instance Monad ((—) ¢) where
return a = const a
m>=f=Xe—f(me)e

getEnv :: ((—) e) e

getEnv = id

‘COMP407S: Lecture 8 - p2337

The do-notation (1)

Haskell provides convenient syntax for
programming with monads:
do
a < expq
b < exp,
return erps
is syntactic sugar for
exp; >= Aa —
expy = \b —
return erps

Note: a in scoie in exp,, a and b in exps.

ecture 9 -p 2637

Solution: Monad Instance

instance Monad S where
m>=f=58X s —
let (a,s") = unS m s
inunS (f a) s

(Using the default definition return = pure.)

COMPAOTS: Lecture 9 p21/37

Monad-specific Operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail =2 String — Maybe a
fail s = Nothing
catch :: Maybe a — Maybe a — Maybe a
ml ‘catch’ m2 =
case ml of
Just — — ml
Nothing — m2

COMPA07S: Lacture § - p24/37

The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:
do
expy
expy
return erps
is syntactic sugar for
exp, >=A_ —
expy S= A_ —
return erps

COMPAOTS: Lecture 9 - p27/37

The do-notation (3)

A let-construct is also provided:
do
let a = exp,
b = exp,
return erps
is equivalent to
do
a < return erp,
b < return expy
return erps

COMPA075: Lecture 9 - p.28/57

Applicative do-notation (2)

For example, an applicative parser:

commandlf :: Parser Command
commandlf =

kwd "if"

¢ < expr

kwd "then"

t < command

kwd "else™

e +— command

return (If ¢t e)

The Haskell 10 Monad (2)

10 essentially provides all effects of typical
imperative languages. Besides input/output:

COMPA075: Locture 9 - p:31/37

« Pointers and imperative state (through IORef)
« Raising and handling exceptions

« Concurrency

« Foreign function interface

10 is sometimes referred to as the “sin bin”!

COMPA075: Lecture 9 - p.34/37

Numbering Trees in do-notation

numberTree t = runS (ntAuz t)
where
ntAuz :: Tree a — S (Tree Int)
ntAuz (Leaf _) = do
n < get
set (n+1)
return (Leaf n)
ntAuz (Node t1 t2) = do
t1' « ntAuz t1
t2' + ntAuz t2
return (Node t1' t2)

‘COMP407S: Lecture 9 - p29/37

Monadic Utility Functions

Some monad utilities:

sequence :: Monad m = [m a] — m [a]

sequence_:: Monad m = [m a] — m ()

mapM :: Monad m = (a — m b) — [a] — m [b]

mapM_ :: Monad m = (a = m b) = [a] = m ()

when :: Monad m = Bool — m () — m ()

foldM :: Monad m =
(a—=b—=>ma)—>a—[b]—>ma

LiftM :: Monad m = (a = b) > ma—mb

liftM2 :: Monad m =
(a—=b—c)—=ma—>mb—mc

‘COMP407S: Lecture 8 - p3237

The ST Monad: ‘“Real” State

The ST monad (common Haskell extension)
provides real, imperative state behind the scenes
to allow efficient implementation of imperative
algorithms:

data ST s a -- abstract

instance Monad (ST s)

newSTRef ::s ST a (STRef s a)
readSTRef :: STRef s a — ST s a
writeSTRef :: STRef s a — a — ST s ()
runST :: (forall s . st s a) — a

‘COMP47S: Lecture 9 - p35/37

Applicative do-notation (1)

A variation of the do-notation is also available for
applicatives:

do
a + exp;
b+ exp,
return (...a...b...)

Note that the bound variables may only be used
in the return-expression, or the code becomes
monadic.

In this case, a must not occur in exp,.

COMPA07S: Lecture 9 - p30/37

The Haskell 10 Monad (1)

In Haskell, 10 is handled through the 10 monad.
IO is abstract! Conceptually:

newtype 10 a = I0 (World — (a, World))
Some operations:

putChar :: Char — IO ()

putStr 2 String — 10 ()

putStrLn 2 String — 10 ()
getChar 10 Char
getLine :: 10 String

getContents :: IO String

COMPA07S: Lacture § - p.33/a7

ST vs 10

Why use ST if IO also gives access to
imperative state?

+ ST much more focused: provides only state,
not a lot more besides.

< ST computations can be run safely inside
pure code.

It is possible to run 7O comp. inside pure code:
unsafePerformIO :: 10 a — a

But make sure you know what you are doing!

COMPAO7S: Lecture 9 - p36/37

Reading

* Philip Wadler. The Essence of Functional
Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL92), 1992.

* Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

_ conmTse e

	This Lecture
	Monads in Haskell (1)
	Monads in Haskell (2)
	The ensuremath {Conid {Maybe}} Monad in Haskell
	The Monad Type Class Hierachy (1)
	The Monad Type Class Hierachy (2)
	Applicative Functors (1)
	Applicative Functors (2)
	Applicative Functors (3)
	Instances of ensuremath {Conid {Applicative}}
	Class ensuremath {Conid {Alternative}}
	Instances of ensuremath {Conid {Alternative}}
	Example: Applicative Parser (1)
	Example: Applicative Parser (2)
	Example: Applicative Parser (3)
	Applicative Functors and Monads
	Exercise: A State Monad in Haskell
	Solution: ensuremath {Conid {Functor}} Instance
	Solution: ensuremath {Conid {Applicative}} Instance
	Solution: ensuremath {Conid {Monad}} Instance
	The List Monad
	The Reader Monad
	Monad-specific Operations (1)
	Monad-specific Operations (2)
	The ensuremath {mathbf {do}}-notation (1)
	The ensuremath {mathbf {do}}-notation (2)
	The ensuremath {mathbf {do}}-notation (3)
	Numbering Trees in ensuremath {mathbf {do}}-notation
	Applicative ensuremath {mathbf {do}}-notation (1)
	Applicative ensuremath {mathbf {do}}-notation (2)
	Monadic Utility Functions
	The Haskell IO Monad (1)
	The Haskell IO Monad (2)
	The ST Monad: ``Real'' State
	ensuremath {Conid {ST}} vs ensuremath {Conid {IO}}
	Reading

