Outline

- CFRP issues
- Introduction to Yampa
- Arrows
- A closer look at Yampa

CFRP issues: Sharing

Consider:

\[
\text{let } x = 1 + \text{integral } (x \times x) \text{ in } x
\]

The recursively defined behavior, a function, is applied over and over to the same stream of sample times.

- Causes recomputation
- Laziness does not help
- Memoization needed to get acceptable performance. But with care to avoid memory leaks.

CFRP issues: Restart (1)

Consider:

\[
\text{let } c = \text{hold } 0 \text{ (count (repeatedly 0.5)) in } c \text{ 'until' after } 5 \implies c \times 2
\]

What happened at the time of the switch?

- CFRP behaviors and events are signal generators: they will start from scratch when switched in.
- But what if we just want to continue observing an evolving signal?
CFRP issues: Restart (2)

• A version of `until` that starts new behaviors from time 0.
 Time and space leak!

• Support signals as well, e.g. through some variant of `runningIn`:

  ```
  runningIn ::
  B a -> (B a -> B b) -> B b
  ```

 Idea: apply behavior to start time once and for all, then wrap up the resulting signal as a signal generator that ignores its starting time.

CFRP issues: Restart (3)

Problems with `runningIn`

• No type-level distinction between signals and signal generators: a “running behavior” is a signal masquerading as a signal generator. (But could be fixed though other designs.)

• Difficult to implement; requires imperative techniques, implies certain overhead.

An alternative

By adopting *signal functions* as the central notion, these problems are side stepped:

• Sharing amounts to sharing computations of signal samples: lazy evaluation handles that just fine.

• Observation of externally originating signals is inherent in the notion of a signal function.

• Implementation is straightforward.

Yampa

What is *Yampa*?

• FRP implementation structured using *arrows*.

• Realised as an *Embedded Domain-Specific Language* (EDSL), i.e. a combinator library.

• *Continuous-time* signals (conceptually)

• Discrete-time signals represented by continuous-time signal carrying option type `Event`.

• Functions on signals, *Signal Functions*, is the central abstraction, forming the arrows.
• Signal functions are first-class entities, signals a secondary notion, only existing indirectly through the signal functions.
• Advanced *switching constructs* to describe systems with highly dynamic structure.
• People:
 - Antony Courtney
 - Paul Hudak
 - Henrik Nilsson
 - John Peterson

Signal functions (1)

Key concept: *functions on signals*.

![Signal functions diagram](image)

Intuition:

\[
\text{Signal } \alpha \approx \text{Time} \rightarrow \alpha \\
\text{SF } \alpha \beta \approx \text{Signal } \alpha \rightarrow \text{Signal } \beta \\
\]

\[
x :: \text{Signal } T1 \\
y :: \text{Signal } T2 \\
f :: \text{SF } T1 \ T2
\]

Signal functions (2)

Additionally, *causality* required: output at time \(t \) must be determined by input on interval \([0, t]\).

Signal functions are said to be

- *pure* or *stateless* if output at time \(t \) only depends on input at time \(t \)
- *impure* or *stateful* if output at time \(t \) depends on input over the interval \([0, t]\).

Yampa

Yampa is a river with long calmly flowing sections and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
Signal functions and state

Alternative view:
Signal functions can encapsulate state.

\[x(t) \xrightarrow{f} y(t) \]

\(\text{state}(t) \) summarizes input history \(x(t'), t' \in [0, t] \).
Thus, really a kind of process.

From this perspective, signal functions are:
- **stateful** if \(y(t) \) depends on \(x(t) \) and \(\text{state}(t) \)
- **stateless** if \(y(t) \) depends only on \(x(t) \)

Yampa and arrows (1)

In Yampa, systems are described by combining signal functions (forming new signal functions).

For example, serial composition:

\[\quad \]

A **combinator** can be defined that captures this idea:

\((\ggg) \) :: SF a b -> SF b c -> SF a c

Yampa and arrows (2)

But systems can be complex:

\[\]

How many and what combinators do we need to be able to describe arbitrary systems?

Yampa and arrows (3)

John Hughes’ **arrow** framework:

- Abstract data type interface for function-like types.
- Particularly suitable for types representing process-like computations.
- Related to **monads**, since arrows are (effectful) computations, but more general:
 any monad \(m \) induces an arrow, the Kleisli arrow, \(\alpha \rightarrow m \beta \), but not vice versa.
- Provides a minimal set of “wiring” combinators.
What is an arrow? (1)

• A **type constructor** `a` of arity two.
• Three operators:
 - **lifting**:
    ```
    arr :: (b -> c) -> a b c
    ```
 - **composition**:
    ```
    (>>>) :: a b c -> a c d -> a b d
    ```
 - **widening**:
    ```
    first :: a b c -> a (b,d) (c,d)
    ```
• A set of **algebraic laws** that must hold.

The Arrow class

In Haskell, a **type class** is used to capture these ideas (except for the laws):

```haskell
class Arrow a where
  arr :: (b -> c) -> a b c
  (>>>) :: a b c -> a c d -> a b d
  first :: a b c -> a (b,d) (c,d)
```

Arrow laws

\[
(f >> g) >> h = f >> (g >> h)
\]
\[
arr \ (g \ . \ f) = arr f >> arr g
\]
\[
arr \ id >> f = f
\]
\[
f = f >> arr \ id
\]
\[
first \ (arr f) = arr \ (f \times \ id)
\]
\[
first \ (f >> g) = first f >> first g
\]
\[
first f >> arr \ (id \times g) = arr \ (id \times g) >> first f
\]
\[
first f >> arr \ fst = arr \ fst >> f
\]
\[
first \ (first f) >> arr \ assoc = arr \ assoc >> first f
\]
Functions are arrows (1)

Functions are a simple example of arrows. The arrow type constructor is just `(->)` in that case.

Exercise 1: Suggest suitable definitions of

- `arr`
- `(>>>)`
- `first` for this case!

Functions are arrows (2)

Solution:

- `arr = id`

To see this, recall

```haskell
id :: t -> t
arr :: (b->c) -> a b c
```

Instantiate with

```haskell
a = (->)
t = b->c = (->) b c
```

Functions are arrows (3)

- `f >>> g = \a -> g (f a)` or
- `f >>> g = g . f` or even
- `(>>>) = flip (.)`
- `first f = \(b,d) -> (f b,d)`

Functions are arrows (4)

Arrow instance declaration for functions:

```haskell
instance Arrow (->) where
  arr      = id
  (>>>)    = flip (.)
  first f  = \(b,d) -> (f b,d)
```
The arrow laws reformulated

Exploiting that functions are arrows, some of the laws can be formulated more neatly. E.g:

\[
\begin{align*}
\text{arr } (f >>> g) &= \text{arr } f >>> \text{arr } g \\
\text{first } (\text{arr } f) &= \text{arr } (\text{first } f)
\end{align*}
\]

The loop combinator (1)

Another important operator is \text{loop}: a fixed-point operator used to express recursive arrows or \textit{feedback}:

\[
\text{loop } f
\]

The loop combinator (2)

Not all arrow instances support \text{loop}. It is thus a method of a separate class:

\[
\text{class Arrow } a \Rightarrow \text{ArrowLoop } a \text{ where}
\]

\[
\text{loop } :: a \ (b, d) \ (c, d) \rightarrow a \ b \ c
\]

Remarkably, the four combinators \text{arr}, \text{>>>}, \text{first, and \text{loop}} are sufficient to express any conceivable wiring!

Some more arrow combinators (1)

\[
\begin{align*}
\text{second } :: \text{Arrow } a \Rightarrow \\
& a \ b \ c \rightarrow a \ (d,b) \ (d,c)
\end{align*}
\]

\[
\begin{align*}
(***) :: \text{Arrow } a \Rightarrow \\
& a \ b \ c \rightarrow a \ d \ e \rightarrow a \ (b,d) \ (c,e)
\end{align*}
\]

\[
\begin{align*}
(&&) :: \text{Arrow } a \Rightarrow \\
& a \ b \ c \rightarrow a \ b \ d \rightarrow a \ b \ (c,d)
\end{align*}
\]
Some more arrow combinators (2)

As diagrams:

Second f

f *** g

f & & & g

Exercise 2: One solution

Exercise 2: Describe the following circuit using arrow combinators:

a1, a2, a3 :: A Double Double
circuit_v1 :: A Double Double
circuit_v1 = (a1 & & & arr id)
>>> (a2 *** a3)
>>> arr (uncurry (+))

Exercise 2: Another solution

Exercise 2: Describe the following circuit:

a1, a2, a3 :: A Double Double
circuit_v2 :: A Double Double
circuit_v2 = arr \x -> (x, x)
>>> first a1
>>> (a2 *** a3)
>>> arr (uncurry (+))

Exercise 2: Describe the following circuit using arrow combinators:

a1, a2, a3 :: A Double Double

Exercise 3: The combinators second, (***)
and (& & &) are not primitive, but defined in terms of arr, (>>>)
and first. Suggest suitable definitions!
Exercise 3: Suggest definitions of second, (***) , and (&&&).

second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

(***) :: Arrow a => a b c -> a d e -> a (b,d) (c,e)
f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)
f &&& g = arr (\x -> (x,x)) >>> (f *** g)

Note on the definition of (***) (1)

Are the following two definitions of (***) equivalent?

• f *** g = first f >>> second g
• f *** g = second g >>> first f

No, in general

first f >>> second g \neq second g >>> first f

since the order of the two possibly effectful computations f and g are different.

Note on the definition of (***) (2)

Similarly

(f *** g) >>> (h *** k) \neq (f >>> h) *** (g >>> k)

since the order of f and g differs.

However, Yampa’s signal functions have no effectful interaction: they are Causal Commutative Arrows (Liu, Cheng, Hudak 2009)

Both considered identities actually hold.

Yet another attempt at exercise 2

Y et another attempt at exercise 2

circuit_v3 :: A Double Double
circuit_v3 = (a1 &&& a3)
 >>> first a2
 >>> arr (uncurry (+))

Are circuit_v1, circuit_v2, and circuit_v3 all equivalent?
Point-free vs. pointed programming

What we have seen thus far is an example of point-free programming: the values being manipulated are not given any names. This is often appropriate, especially for small definitions, and it facilitates equational reasoning as shown by Bird & Meertens (Bird 1990).

However, large programs are much better expressed in a pointed style, where names can be given to values being manipulated.

The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports pointed arrow programming. Only syntactic sugar.

\[
\text{proc } \text{pat} \rightarrow \text{do [rec]}
\]

\[
\begin{align*}
\text{pat}_1 & \leftarrow \text{sfexp}_1 \leftarrow \text{exp}_1 \\
\text{pat}_2 & \leftarrow \text{sfexp}_2 \leftarrow \text{exp}_2 \\
& \vdots \\
\text{pat}_n & \leftarrow \text{sfexp}_n \leftarrow \text{exp}_n \\
\text{returnA} & \leftarrow \text{exp}
\end{align*}
\]

Also: let \(\text{pat} = \text{exp} \equiv \text{pat} \leftarrow \text{id} \leftarrow \text{exp} \)

The arrow do notation (2)

Let us redo exercise 3 using this notation:

\[
\begin{align*}
\text{circuit_v4} & : \text{A Double Double} \\
\text{circuit_v4} & = \text{proc } \text{x} \rightarrow \text{do} \\
& y_1 \leftarrow a_1 \leftarrow x \\
& y_2 \leftarrow a_2 \leftarrow y_1 \\
& y_3 \leftarrow a_3 \leftarrow x \\
& \text{returnA} \leftarrow y_2 + y_3
\end{align*}
\]

The arrow do notation (3)

We can also mix and match:

\[
\begin{align*}
\text{circuit_v5} & : \text{A Double Double} \\
\text{circuit_v5} & = \text{proc } \text{x} \rightarrow \text{do} \\
& y_2 \leftarrow a_2 \ll a_1 \leftarrow x \\
& y_3 \leftarrow a_3 \leftarrow x \\
& \text{returnA} \leftarrow y_2 + y_3
\end{align*}
\]
The arrow do notation (4)

Exercise 4: Describe the following circuit using the arrow do-notation:

\[
\begin{array}{c}
\text{a1} \quad \text{a2} \\
\downarrow \quad \downarrow \\
\text{a3}
\end{array}
\]

\[
\text{a1, a2 :: A Double Double}
\]

\[
\text{a3 :: A (Double,Double) Double}
\]

Exercise 5: As 4, but directly using only the arrow combinators.

Solution exercise 4

\[
\text{circuit = proc x -> do}
\]

\[
\text{rec}
\]

\[
\begin{array}{c}
y1 <- a1 <- x \\
y2 <- a2 <- y1 \\
y3 <- a3 <- (x, y)
\end{array}
\]

\[
\text{let y = y2 + y3}
\]

\[
\text{returnA <- y}
\]

Some basic signal functions (1)

- identity :: SF a a
 \[
 \text{identity} = \text{arr \text{id}}
 \]
- constant :: b -> SF a b
 \[
 \text{constant b} = \text{arr \text{(const b)}}
 \]
- integral :: VectorSpace a s=\implies SF a a
 It is defined through:
 \[
 y(t) = \int_0^t x(\tau) \, d\tau
 \]

Some basic signal functions (2)

- iPre :: a -> SF a a
- (^<<) :: (b->c) -> SF a b -> SF a c
 \[
 f (^<<) \text{sf} = \text{sf} >>> \text{arr f}
 \]
- time :: SF a Time
 Quick Exercise: Define time!
 \[
 \text{time} = \text{constant 1.0} >>> \text{integral}
 \]

Note: there is no built-in notion of global time in Yampa: time is always local, measured from when a signal function started.
A bouncing ball

\[y = y_0 + \int v \, dt \]

\[v = v_0 + \int -9.81 \, dt \]

On impact:

\[v = -v(t-) \]

(fully elastic collision)

Events

Conceptually, *discrete-time* signals are only defined at discrete points in time, often associated with the occurrence of some *event*.

Yampa models discrete-time signals by lifting the *range* of continuous-time signals:

\[
\text{data Event } a = \text{NoEvent} \mid \text{Event } a
\]

Discrete-time signal = \text{Signal}(\text{Event } a).

Associating information with an event occurrence:

\[
\text{tag :: Event } a \rightarrow b \rightarrow \text{Event } b
\]

Modelling the bouncing ball: part 1

Free-falling ball:

\[
\text{type Pos } = \text{Double} \\
\text{type Vel } = \text{Double}
\]

\[
\text{fallingBall } :: \\
\text{Pos } \rightarrow \text{Vel } \rightarrow \text{SF } () \rightarrow \text{Pos, Vel}
\]

\[
\text{fallingBall } y_0 \ v_0 = \text{proc } () \rightarrow \text{do} \\
\ v \leftarrow (v_0 +) \hat{\cdot}^< \int \left< -9.81 \right> \\
\ y \leftarrow (y_0 +) \hat{\cdot}^< \int \left< v \right> \\
\ \text{returnA } \left< (y, v) \right>
\]

Some basic event sources

- \text{never :: SF } a \rightarrow \text{Event } b
- \text{now :: b } \rightarrow \text{SF } a \rightarrow \text{Event } b
- \text{after :: Time } \rightarrow \text{b } \rightarrow \text{SF } a \rightarrow \text{Event } b
- \text{repeatedly :: Time } \rightarrow \text{b } \rightarrow \text{SF } a \rightarrow \text{Event } b
- \text{edge :: SF } \text{Bool } \rightarrow \text{Event } ()
Stateful event suppression

- notYet :: SF (Event a) (Event a)
- once :: SF (Event a) (Event a)

Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall' ::
Pos -> Vel
-> SF () ((Pos,Vel), Event (Pos, Vel))
fallingBall' y0 v0 = proc () -> do
 yv@(y, _) <- fallingBall y0 v0 -< ()
 hit <- edge -< y <= 0
 returnA -< (yv, hit 'tag' yv)

Switching

Q: How and when do signal functions “start”?
A: • Switchers “apply” a signal functions to its input signal at some point in time.
 • This creates a “running” signal function instance.
 • The new signal function instance often replaces the previously running instance.

Switchers thus allow systems with varying structure to be described.

The basic switch (1)

Idea:
• Allows one signal function to be replaced by another.
• Switching takes place on the first occurrence of the switching event source.

switch ::
SF a (b, Event c)
-> (c -> SF a b)
-> SF a b
Exercise 6: Define an event counter `countFrom` using

```haskell
countFrom :: Int -> SF (Event a) Int

using

switch :: SF a (b, Event c)
      -> (c -> SF a b)
      -> SF a b
constant :: b -> SF a b
notYet :: SF (Event a) (Event a)

and any other basic combinators you might need.
```

Solution exercise 6

Another version that ignores any event at time 0 also from the very start:

```haskell
countFrom :: Int -> SF (Event a) Int
countFrom n =
  switch
    (constant n &&& notYet)
    (const (countFrom (n+1)))
```

Modelling the bouncing ball: part 3

Making the ball bounce:

```haskell
bouncingBall :: Pos -> SF () (Pos, Vel)
bouncingBall y0 = bbAux y0 0.0
  where
    bbAux y0 v0 =
      switch (fallingBall' y0 v0) $ \(y,v) ->
        bbAux y (-v)
```
Modelling using impulses (1)

From a modelling perspective, using a device like switch to model the interaction between the ball and the floor may seem rather unnatural. A more appropriate account of what is going on is that an impulsive force is acting on the ball for a short time.

Modelling using impulses (2)

However, Yampa does provide a derived version of integral capturing the basic idea:

```haskell
impulseIntegral ::
  VectorSpace a k =>
  SF (a, Event a) a
```

The decoupled switch

```haskell
dSwitch ::
  SF a (b, Event c) -> (c -> SF a b) -> SF a b
```

- Output at the point of switch is taken from the old subordinate signal function, not the new residual signal function.
- This means the output at the current point in time is independent of whether or not the switching event occurs at that point in time. Hence decoupled.
The recurring switch

\[\text{rSwitch, drSwitch} :: \ \text{SF} \ a \ b \rightarrow \text{SF} \ (a, \text{Event} (\text{SF} \ a \ b)) \ b \]

- Switching events received on the signal function input, carrying signal function to switch into.
- Switching occurs whenever an event occurs, not just once.
- Can be defined in terms of \text{switch} / \text{dSwitch}.

Reading (1)

Reading (2)

Reading (3)