CFRP issues: Sharing

Consider:

let x = 1 + integral (x * x) in x

The recursively defined behavior, a *function*, is applied over and over to the *same* stream of sample times.

- Causes recomputation
- Laziness does *not* help
- Memoization needed to get acceptable performance. But with care to avoid memory leaks.

CFRP issues: Restart (1)

Consider:

let c = hold 0 (count (repeatedly 0.5)) in c 'until' after 5 --> c * 2

What happened at the time of the switch?

- CFRP behaviors and events are *signal generators*: they will start from scratch when switched in.
- But what if we just want to continue observing an evolving signal?

An alternative

By adopting *signal functions* as the central notion, these problems are side stepped:

- Sharing amounts to sharing computations of signal samples: lazy evaluation handles that just fine.
- Observation of externally originating signals is inherent in the notion of a signal function.
- Implementation is straightforward.

CFRP issues: Restart (2)

A version of *until* that starts new behaviors from time 0.

Time and space leak!

- Support signals as well, e.g. through some variant of *runningIn*:

```haskell
runningIn :: B a -> (B a -> B b) -> B b
```

Idea: apply behavior to start time once and for all, then wrap up the resulting signal as a signal generator that ignores its starting time.

Yampa

What is *Yampa*?

- FRP implementation structured using *arrows*.
- Realised as an *Embedded Domain-Specific Language* (EDSL), i.e. a combinator library.
- Continuous-time signals (conceptually)
- Discrete-time signals represented by continuous-time signal carrying option type *Event*.
- Functions on signals, *Signal Functions*, is the central abstraction, forming the arrows.

Yampa

- Signal functions are first-class entities, signals a secondary notion, only existing indirectly through the signal functions.
- Advanced *switching constructs* to describe systems with highly dynamic structure.
- People:
 - Antony Courtney
 - Paul Hudak
 - Henrik Nilsson
 - John Peterson
Yampa?

Yampa is a river with long calmly flowing sections and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

Signal functions (1)

Key concept: functions on signals.

```
\( f : \text{SF } \alpha \beta \) \approx \text{Signal } \alpha \rightarrow \text{Signal } \beta
```

Intuition:

\[\text{Signal } \alpha \approx \text{Time } \rightarrow \alpha \]

\[\text{SF } \alpha \beta \approx \text{Signal } \alpha \rightarrow \text{Signal } \beta \]

\[x :: \text{Signal } T1 \]
\[y :: \text{Signal } T2 \]
\[f :: \text{SF } T1 T2 \]

Signal functions (2)

Additionally, causality required: output at time \(t \) must be determined by input on interval \([0, t]\).

Signal functions are said to be
- pure or stateless if output at time \(t \) only depends on input at time \(t \)
- impure or stateful if output at time \(t \) depends on input over the interval \([0, t]\).

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

\[x(t) \]

\[f \left[\text{state}(t) \right] \]

\[x(t) \]

\(\text{state}(t) \) summarizes input history \(x(t'), t' \in [0, t] \).
Thus, really a kind of process.

From this perspective, signal functions are:
- stateful if \(y(t) \) depends on \(x(t) \) and \(\text{state}(t) \)
- stateless if \(y(t) \) depends only on \(x(t) \)

Yampa and arrows (1)

In Yampa, systems are described by combining signal functions (forming new signal functions).

For example, serial composition:

\[f \gg g \]

A combinator can be defined that captures this idea:

\[(+++) :: \text{SF } a b \rightarrow \text{SF } b c \rightarrow \text{SF } a c \]

Yampa and arrows (2)

But systems can be complex:

How many and what combinators do we need to be able to describe arbitrary systems?

Yampa and arrows (3)

John Hughes’ arrow framework:
- Abstract data type interface for function-like types.
- Particularly suitable for types representing process-like computations.
- Related to monads, since arrows are (effectful) computations, but more general: any monad \(m \) induces an arrow, the Kleisli arrow, \(\alpha \rightarrow m \beta \), but not vice versa.
- Provides a minimal set of “wiring” combinators.

What is an arrow? (1)

- A type constructor \(a \) of arity two.
- Three operators:
 - lifting:
 \[\text{arr} :: (b \rightarrow c) \rightarrow a \ b \ c \]
 - composition:
 \[(+++) :: a \ b \ c \rightarrow a \ c \ d \rightarrow a \ b \ d \]
 - widening:
 \[\text{first} :: a \ b \ c \rightarrow a \ (b, d) \ (c, d) \]
- A set of algebraic laws that must hold.

What is an arrow? (2)

These diagrams convey the general idea:

\[a \rightarrow b \rightarrow c \rightarrow d \]

\[f \gg g \]

\[f \gg g \rightarrow h \]

\[\text{first } f \]
The Arrow class

In Haskell, a type class is used to capture these ideas (except for the laws):

class Arrow a where
 arr :: (b -> c) -> a b c
 (<<<) :: a b c -> a c d -> a b d
 first :: a b c -> a (b,d) (c,d)

Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)
arr (g . f) = arr f >>> arr g
arr id >>> f = f
first (arr f) = arr (f x id)
first (f >>> g) = first f >>> first g
first f >>> arr (id x g) = arr (id x g) >>> first f
first f >>> arr (f x g) = arr (f x g) >>> first f
first (arr f) >>> arr assoc = arr assoc >>> first f

Functions are arrows (1)

Functions are a simple example of arrows. The arrow type constructor is just (->) in that case.

Exercise 1: Suggest suitable definitions of
 • arr
 • (>>>)
 • first
 for this case!

Functions are arrows (2)

Solution:
 • arr = id
 To see this, recall
 id :: t -> t
 arr :: (b->c) -> a b c
 Instantiate with
 a = (->)
 t = b->c = (->) b c

Functions are arrows (3)

 • f >>> g = \a -> g (f a) or
 • f >>> g = g . f or even
 • (>>>) = flip (.)
 • first f = \(b,d) -> (f b,d)

Functions are arrows (4)

Arrow instance declaration for functions:

instance Arrow (->) where
 arr = id
 (>>>) = flip (.)
 first f = \(b,d) -> (f b,d)

The arrow laws reformulated

Exploiting that functions are arrows, some of the laws can be formulated more neatly. E.g:

arr (f >>> g) = arr f >>> arr g
first (arr f) = arr (first f)

The loop combinator (1)

Another important operator is loop: a fixed-point operator used to express recursive arrows or feedback:

The loop combinator (2)

Not all arrow instances support loop. It is thus a method of a separate class:

class Arrow a => ArrowLoop a where
 loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr, (>>>, first, and loop are sufficient to express any conceivable wiring!
Some more arrow combinators (1)

- `second :: Arrow a => a b c -> a (d,b) (d,c)`
- `(***) :: Arrow a => a b c -> a d e -> a (b,d) (c,e)`
- `(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)`

Some more arrow combinators (2)

As diagrams:

Exercise 2: Describe the following circuit using arrow combinators:

```
  a1 -> a2 -> a3
```

Exercise 3: The combinators `second`, `(***)`, and `(&&&)` are not primitive, but defined in terms of `arr`, `(>>>)`, and `first`. Suggest suitable definitions!

Exercise 2: One solution

```
circuit_v1 :: A Double Double
circuit_v1 = (a1 &&& arr id) >>> (a2 *** a3) >>> arr (uncurry (+))
```

Exercise 2: Another solution

```
circuit_v2 :: A Double Double
circuit_v2 = arr (\x -> (x,x)) >>> first a1 >>> (a2 *** a3) >>> arr (uncurry (+))
```

Exercise 3: Solution

```
  second :: Arrow a => a b c -> a (d,b) (d,c)
  (*** ) :: Arrow a => a b c -> a d e -> a (b,d) (c,e)
  (&&&) :: Arrow a => a b c -> a b d -> a b (c,d)
```

Note on the definition of `(***)` (1)

Are the following two definitions of `(***)` equivalent?

- `f *** g = first f >>> second g`
- `f *** g = second g >>> first f`

No, in general,

- `first f >>> second g ≠ second g >>> first f`

since the order of the two possibly effectful computations `f` and `g` are different.

Note on the definition of `(***)` (2)

Similarly

- `(f *** g) >>> (h *** k) ≠ (f >>> h) *** (g >>> k)`

since the order of `f` and `g` differs.

However, Yampa's signal functions have no effectful interaction: they are Causal Commutative Arrows (Liu, Cheng, Hudak 2009)

Both considered identities actually hold.

Yet another attempt at exercise 2

```
circuit_v3 :: A Double Double
circuit_v3 = (a1 &&& a3) >>> first a2 >>> arr (uncurry (+))
```
Point-free vs. pointed programming

What we have seen thus far is an example of point-free programming: the values being manipulated are not given any names. This is often appropriate, especially for small definitions, and it facilitates equational reasoning as shown by Bird & Meertens (Bird 1990).

However, large programs are much better expressed in a pointed style, where names can be given to values being manipulated.

The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports pointed arrow programming. Only syntactic sugar.

\[
\text{proc pat -> do [rec]}
\]

\[
\begin{align*}
\text{pat}_1 & \leftarrow \text{sfexp}_1 \leftarrow \text{exp}_1 \\
\text{pat}_2 & \leftarrow \text{sfexp}_2 \leftarrow \text{exp}_2 \\
& \vdots \\
\text{pat}_n & \leftarrow \text{sfexp}_n \leftarrow \text{exp}_n \\
\text{returnA} & \leftarrow \text{exp}
\end{align*}
\]

Also: \(\text{let pat = exp} \equiv \text{pat} \leftarrow \text{arr id} \leftarrow \text{exp} \)

The arrow do notation (2)

Let us redo exercise 3 using this notation:

\[
\begin{align*}
\text{circuit_v4 :: A Double Double} \\
\text{circuit_v4 = proc x -> do} \\
& y_1 \leftarrow a_1 \leftarrow x \\
& y_2 \leftarrow a_2 \leftarrow y_1 \\
& y_3 \leftarrow a_3 \leftarrow x \\
& \text{returnA} \leftarrow y_2 + y_3
\end{align*}
\]

The arrow do notation (3)

We can also mix and match:

\[
\begin{align*}
\text{circuit_v5 :: A Double Double} \\
\text{circuit_v5 = proc x -> do} \\
& y_2 \leftarrow a_2 \leftarrow a_1 \leftarrow x \\
& y_3 \leftarrow a_3 \leftarrow x \\
& \text{returnA} \leftarrow y_2 + y_3
\end{align*}
\]

The arrow do notation (4)

Exercise 4: Describe the following circuit using the arrow do-notation:

\[
\begin{align*}
\text{a1, a2 :: A Double Double} \\
\text{a3 :: A (Double,Double) Double} \\
\text{Exercise 5: As 4, but directly using only the arrow combinators.}
\end{align*}
\]

Some basic signal functions (1)

• \(\text{id} \)entity :: SF a a
 \(\text{id} \)entity = arr id
• constant :: b -> SF a b
 constant b = arr (const b)
• integral :: VectorSpace a s=>SF a a
 It is defined through:
 \[
y(t) = \int_0^t x(\tau) d\tau
\]

Some basic signal functions (2)

• \(\text{iPre} \) :: a -> SF a a
 \(\text{iPre} \) = \text{arr id}
• \((^{<<}) \) :: (b->c) -> SF a b -> SF a c
 \(f (^{<<}) \) sf = sf >> arr f
• \(\text{time} \) :: SF a Time
 \(\text{time} \) = constant 1.0 >> integral

Quick Exercise: Define \(\text{time} \)!

\(\text{time} = \text{constant 1.0} \ggg \text{integral} \)

A bouncing ball

\[
y = y_0 + \int_0^t v \, dt
\]

\[
v = v_0 + \int_{-9.81} \text{on impact:}
\]

Note: there is no built-in notion of global time in Yampa: time is always local, measured from when a signal function started.
Modelling the bouncing ball: part 1

Free-falling ball:

```haskell
type Pos = Double
type Vel = Double
fallingBall :: Pos -> Vel -> SF () ((Pos, Vel), Event (Pos, Vel))
fallingBall y0 v0 = proc () -> do
  yv@(y, _) <- fallingBall y0 v0 -< ()
  hit <- edge -< y <= 0
  returnA -< (yv, hit 'tag' yv)
```

Events

Conceptually, *discrete-time* signals are only defined at discrete points in time, often associated with the occurrence of some event. Yampa models discrete-time signals by lifting the range of continuous-time signals:

```haskell
data Event a = NoEvent | Event a
```

Discrete-time signal = Signal (Event a).

Associating information with an event occurrence:

```haskell
tag :: Event a -> b -> Event b
```

Some basic event sources

- never :: SF a (Event b)
- now :: b -> SF a (Event b)
- after :: Time -> b -> SF a (Event b)
- repeatedly :: Time -> b -> SF a (Event b)
- edge :: SF Bool (Event (a))

Switching

Q: How and when do signal functions “start”?
A:
- Switchers "apply" a signal function to its input signal at some point in time.
- This creates a "running" signal function instance.
- The new signal function instance often replaces the previously running instance.

Switchers thus allow systems with varying structure to be described.

The basic switch (1)

Idea:
- Allows one signal function to be replaced by another.
- Switching takes place on the first occurrence of the switching event source.

```haskell
switch :: SF a (b, Event c)
       -> (c -> SF a b)
       -> SF a b
```

The basic switch (2)

Exercise 6: Define an event counter `countFrom`

```haskell
countFrom :: Int -> SF (Event a) Int
countFrom n =
  switch
    (constant n &&& identity)
    (const (notYet >>> countFrom (n+1)))
```

Solution exercise 6
Solution exercise 6

Another version that ignores any event at time 0 also from the very start:

```haskell
countFrom :: Int -> SF (Event a) Int
countFrom n = switch
  (constant n &&& notYet)
  (const (countFrom (n+1)))
```

Modelling the bouncing ball: part 3

Making the ball bounce:

```haskell
bouncingBall :: Pos -> SF () (Pos, Vel)
bouncingBall y0 = bbAux y0 0.0
  where
    bbAux y0 v0 = switch (fallingBall' y0 v0) $ \(y,v) ->
    bbAux y (-v)
```

Modelling using impulses (1)

From a modelling perspective, using a device like `switch` to model the interaction between the ball and the floor may seem rather unnatural.

A more appropriate account of what is going on is that an *impulsive* force is acting on the ball for a short time.

This can be abstracted into **Dirac Impulses**: impulses that act instantaneously. See Henrik Nilsson. Functional Automatic Differentiation with Dirac Impulses. In *Proceedings of ICFP 2003*.

Modelling using impulses (2)

However, Yampa does provide a derived version of integral capturing the basic idea:

```haskell
impulseIntegral ::
  VectorSpace a k =>
  SF (a, Event a) a
```

The decoupled switch

```haskell
dSwitch ::
  SF a (b, Event c) -> (c -> SF a b) -> SF a b
```

- Output at the point of switch is taken from the old subordinate signal function, *not* the new residual signal function.
- This means the output at the current point in time is independent of whether or not the switching event occurs at that point in time. Hence decoupled.

The recurring switch

```haskell
rSwitch, drSwitch ::
  SF a b -> SF (a, Event (SF a b)) b
```

- Switching events received on the signal function input, carrying signal function to switch into.
- Switching occurs whenever an event occurs, not just once.
- Can be defined in terms of `switch/dSwitch`.

Reading (1)

Reading (2)

Reading (3)
